Advertisement

Climatic Change

, Volume 28, Issue 4, pp 395–404 | Cite as

Quantile spline models for global temperature change

  • Roger Koenker
  • Frank Schorfheide
Article

Abstract

The Hansen and Lebedeff data set on global surface air temperature change is reanalyzed using smoothing splines designed to estimate the conditional quantile functions of global temperature over the last century. It is assumed only that the quantiles are smooth functions of time. The smoothness of the fitted quantile functions is determined by a data driven version of the Schwarz criterion. The estimates offer statistical evidence of a break in the generally upward sloping trend of the temperature series during the period from 1940 to 1965, a finding originally suggested by Hansen and Lebedeff (1987).

Keywords

Temperature Change Smooth Function Global Temperature Statistical Evidence Temperature Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassett, G. W.: 1992, ‘Breaking Recent Global Temperature Records’,Clim. Change 22, 303–315.Google Scholar
  2. Bloomfield, P.: 1992, ‘Trends in Global Temperature’,Clim. Change 22, 1–16.Google Scholar
  3. Bloomfield, P. and Nychka, D.: 1992, ‘Climate Spectra and Detecting Climate Change’,Clim. Change 22, 275–287.Google Scholar
  4. Boden, T. A., Sepanski, R. J., and Stoss, F. W.: 1991, ‘Trends '91 - A Compendium of Data on Global Change’,CDIAC, Oak Ridge National Laboratory.Google Scholar
  5. Galbraith, J. W. and Green, C.: 1992, ‘Inference about Trends in Global Temperature Data’,Clim. Change 22, 209–221.Google Scholar
  6. Hansen, J. and Lebedeff, S.: 1987, ‘Global Trends of Measured Surface Air Temperature’,J. Geophys. Res. 92, 13345–13372.Google Scholar
  7. Hansen, J. and Lebedeff, S.: 1988, ‘Global Surface Air Temperatures: Update through 1987’,Geophys. Lett. 15, 323–326.Google Scholar
  8. Hastie, T. J. and Tibshirani, R. J.: 1990,Generalized Additive Models, Chapman and Hall, New York.Google Scholar
  9. Koenker, R. and Bassett, G. W.: 1978, ‘Regression Quantiles’,Econometrica 46, 33–50.Google Scholar
  10. Koenker, R., Pin, Ng, and Portnoy, S.: 1993, ‘Quantile Smoothing Splines’,Biometrika, (forthcoming).Google Scholar
  11. Machado, J. A. F.: 1993, ‘Robust Model Selection and M-estimation’,Econom. Theory,9, 478–493.Google Scholar
  12. Perron, P.: 1989, ‘The Great Crash, the Oil Price Shock, and the Unit-Root Hypothesis’,Econometrica 57, 1361–1401.Google Scholar
  13. Schwarz, G.: 1978, ‘Estimating the Dimension of a Model’,Ann. Statist. 6, 461–464.Google Scholar
  14. Seater, J. J.: 1993, ‘World Temperature-Trend Uncertainties and Their Implications for Economic Policy’,J. Busin. Econom. Statist. 11, 265–277.Google Scholar
  15. Solow, A. R.: 1987, ‘Testing for Climate Change: An Application of the Two-Phase Regression Model’,J. Clim. Appl. Meteorol. 26, 1401–1405.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Roger Koenker
    • 1
  • Frank Schorfheide
    • 2
  1. 1.Department of EconomicsUniversity of Illinois at Urbana and ChampaignChampaignUSA
  2. 2.Fachbereich Rechts- und WirtschaftswissenschaftenTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations