Reviews in Fish Biology and Fisheries

, Volume 5, Issue 4, pp 399–416 | Cite as

Biology of the mechanosensory lateral line in fishes

  • John Montgomery
  • Sheryl Coombs
  • Matthew Halstead
Papers

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, J.A. jun. and Bauer, S.E. (1981) Reproductive biology of pygmy angelfish of the genusCentropyge (Pomacanthidae).Bull. Mar. Sci. 3 495–513.Google Scholar
  2. Bleckmann, H. (1993) Role of the lateral line in fish behaviour. In Pitcher, T.J., ed.Behaviour of Teleost Fishes, 2nd edn. London: Chapman & Hall, pp. 177–202.Google Scholar
  3. Blickhan, R., Krick, C., Zehren, D. and Nachtigall, W. (1992) Generation of a vortex chain in the wake of a subundulatory swimmer.Naturwissenschaften 79 220–21.Google Scholar
  4. Bone, Q. (1971) On the scabbard fish,Aphanopus carbo.J. Mar. Biol. Ass. U.K. 58 479–86.Google Scholar
  5. Bone, Q. (1993) Walking skates.Discover 14 13.Google Scholar
  6. Bullock, T.H. and Heiligenberg, W. (1986)Electroreception. New York: Wiley.Google Scholar
  7. Chu, Y.T. and Wen, M.C. (1979) A study of the lateral-line canal system and that of Lorenzini ampullae and tubules of elasmobranchiate fishes of China.Monographs of Fishes of China, Vol. 2. Shanghai: Academic Press.Google Scholar
  8. Coombs, S. (1993) Nearfield source location by mottled sculpin in a dipolar flow field.Soc. Neurosci. Abstr. 19 575.Google Scholar
  9. Coombs, S. and Montgomery, J.C. (1993) Fibers innervating different parts of the lateral line system of an antarctic notothenioid,Trematomus bernacchii, have similar frequency responses, despite large variation in the peripheral morphology.Brain Behav. Evol. 40 217–33.Google Scholar
  10. Coombs, S., Janssen, J. and Montgomery, J.C. (1992) Functional and evolutionary implications of peripheral diversity in lateral line systems. In Webster, D.B., Fay, R.R. and Popper, A.N., eds.The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 267–94.Google Scholar
  11. Denton, E.J. and Gray, J.A.B. (1983) Mechanical factors in the excitation of clupeid lateral lines.Proc. R. Soc. 218B 1–26.Google Scholar
  12. Denton, E.J. and Gray, J.A.B. (1988) Mechanical factors in the excitation of the lateral line of fishes. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds.Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 595–617.Google Scholar
  13. Denton, E.J. and Gray, J.A.B. (1993) Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements.Phil. Trans. R. Soc. Lond. 341B 113–27.Google Scholar
  14. Dijkgraff, S. (1962) The function and significance of the lateral-line organs.Biol. Rev. 38 51–105.Google Scholar
  15. Enger, P.S., Kalmijn, A.J. and Sand, O. (1989) Behavioral identification of lateral line and inner ear function. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 575–90.Google Scholar
  16. Ertman, S.C. and Jumars, P.A. (1988) Effects of bivalve siphon currents on the settlement of inert particles and larvae.J. mar. Res. 46 797–813.Google Scholar
  17. Gray, J.A.B. (1984) Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats.Proc. R. Soc. 220B 299–325.Google Scholar
  18. Gray, J.A.B. and Best, A.C.G. (1989) Patterns of excitation of the lateral line of the ruffe.J. Mar. Biol. Ass. U.K. 69 289–306.Google Scholar
  19. Grobecker, D.B. (1983) The ‘lie-in-wait’ feeding mode of a cryptic teleost,Synanceia verrucosa.Env. Biol. Fishes 8 191–202.Google Scholar
  20. Halstead, M.D.B. (1994) Detection and location of prey by the New Zealand freshwater Galaxiid,Galaxias fasciatus (Pisces: salmoniformes). MSc thesis, Univ. Auckland. 115 pp.Google Scholar
  21. Harden Jones, F.R., Arnold, G.P., Greer Walker, M. and Scholes, P. (1979) Selective tidal stream transport and the migration of plaice (Pleuronectes platessa L.) in the southern North Sea.J. Cons. int. Explor. Mer 38 331–7.Google Scholar
  22. Hassan, E.S. (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fishAnoptichthys jordani. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 217–28.Google Scholar
  23. Hoekstra, D. and Janssen, J. (1985) Non-visual feeding behaviour of the mottled sculpin,Cottus bairdi, in Lake Michigan.Env. Biol. Fishes 12 111–17.Google Scholar
  24. Hoekstra, D. and Janssen, J. (1986) Lateral line receptivity in the mottled sculpin (Cottus bairdi).Copeia 1986 91–6.Google Scholar
  25. Janssen, J. and Corcoran, J. (1993) Lateral line stimuli can override vision to determine sunfish strike trajectory.J. exp. Biol. 176 299–305.Google Scholar
  26. Janssen, J., Sideleva, V. and Montgomery, J.C. (1991) Under-ice observations of fish behavior at McMurdo Sound.Antarctic J. U.S. 26 174–5.Google Scholar
  27. Kalmijn, A.J. (1988) Hydrodynamic and acoustic field detection. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds.Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.Google Scholar
  28. Kalmijn, A.J. (1989) Functional evolution of lateral line and inner ear systems. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–215.Google Scholar
  29. Katsuki, Y., Yoshino, O. and Chen, J. (1951) Action current of the single lateral line nerve fiber of fish. II. On the discharge due to stimulation.Jap. J. Physiol. 1 179–94.Google Scholar
  30. Kleerekoper, H. (1978) Chemoreception and its interaction with flow and light perception in the locomotion and orientation of some elasmobranchs. In Hodgson, E.S. and Mathewson, R.F., eds.Sensory Biology of Sharks, Skates and Rays. Arlington, VA: Off. Naval Res., Dept Navy, pp. 269–329.Google Scholar
  31. LaBabera, M. (1981) Water flow patterns in and around three species of articulate brachiopods.J. exp. mar. Biol. Ecol. 55 185–206.Google Scholar
  32. Magnuson, J.J. (1978) Locomotion by scombrid fishes: hydromechanics, morphology, and behaviour. In Holar, W.S. and Randall, D.J., eds.Fish Physiology, Vol. VII,Locomotion. New York: Academic Press, pp. 239–313.Google Scholar
  33. Monismith, S.G., Koseff, J.R. and Thompson, J.K. (1990) A study of model bivalve siphonal currents.Limnol. Oceanogr. 35 680–96.Google Scholar
  34. Montgomery, J.C. (1989) Lateral line detection of planktonic prey. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 561–74.Google Scholar
  35. Montgomery, J.C. and Bodznick, D. (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish.Neurosci. Lett. 174 145–8.Google Scholar
  36. Montgomery, J.C. and Milton, R.C. (1993) Use of the lateral line for feeding in the torrentfish (Cheimarrichthys fosteri).N. Z. J. Zoo. 20 121–5.Google Scholar
  37. Montgomery, J.C., Coombs, S. and Janssen, J. (1994) Aspects of structure and function in the anterior lateral line of six species of antarctic fish of the suborder Notothenioidei.Brain Behav. Evol. (in press).Google Scholar
  38. Netten, S.M. van (1991) Hydrodynamics of the excitation of the cupula in fish canal lateral line.J. Acoust. Soc. Am. 89 310–19.Google Scholar
  39. Netten, S.M. van and Kroese, A.B.A. (1989) Dynamic behavior and micromechanical properties of the cupula. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 247–64.Google Scholar
  40. Norton, S.F. (1991) Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics.Ecology 72 1807–19.Google Scholar
  41. Norton, S.F. and Brainerd, E.I. (1993) Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae.J. exp. Biol. 176 11–29.Google Scholar
  42. O'Brian, W.J., Browman, H.I. and Evans, B.I. (1990) Search strategies and foraging of animals.Am. Scient. 78 152–60.Google Scholar
  43. Partridge, B.L. and Pitcher, T.J. (1980) The sensory basis of fish schools; relative roles of lateral line and vision.J. comp. Physiol. 135 315–25.Google Scholar
  44. Peterson, C.H. and Quammen, M.L. (1982) Siphon nipping: its importance to small fishes and its impact on growth of the bivalveProtothaca staminea (Conrad).J. exp. mar. Biol. Ecol. 63 249–68.Google Scholar
  45. Platt, C., Popper, A.N. and Fay, R.R. (1989) The ear as part of the octavolateralis system. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 633–54.Google Scholar
  46. Pollak, G.D. and Casseday, J.H. (1989)The Neural Basis of Echolocation in Bats. Heidelberg: Springer-Verlag.Google Scholar
  47. Poulson, T. (1963) Cave adaptation in amblyopsid fishes.Am. Midl. Nat. 70 257–90.Google Scholar
  48. Price, R.E. and Schiebe, M.A. (1978) Measurements of velocity from excurrent siphons of freshwater clams.Nautilus 92 67–9.Google Scholar
  49. Roberts, B.L. and Meredith, G.E. (1989) The efferent system. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 445–60.Google Scholar
  50. Sand, O. (1981) The lateral line and sound reception. In Tavolga, W.N., Popper, A.N. and Fay, R.R., eds.Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 459–80.Google Scholar
  51. Satou, M., Takeuchi, H. Takei, K., Hasegawa, T., Okumoto, N. and Ueda, K. (1987) Involvement of vibrational and visual cues in eliciting spawning behaviour in male Hime salmon (landlocked red salmon,Oncorhynchus nerka).Anim. Behav. 35 1556–84.Google Scholar
  52. Satou, M., Takeuchi, H.A., Takei, K., Hasegawa, T., Matsushima, T. and Okumoto, N. (1994a) Characterization of vibrational and visual signals which elicit spawning behavior in the male hime salmon (landlocked red salmon,Oncorhynchus nerka).J. comp. Physiol. 174A 527–37.Google Scholar
  53. Satou, M., Takeuchi, H.A., Nishii, J., Tanabe, M., Kitamura, S., Okumoto, N. and Iwata, M. (1994b) Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the hime salmon (landlocked red salmon,Oncorhynchus nerka).J. comp. Physiol. 174A 539–49.Google Scholar
  54. Saunders, A.J. and Montgomery, J.C. (1985) Field and laboratory studies of the feeding behaviour of the piperHyporhamphus ihi with reference to the role of the lateral line in feeding.Proc. R. Soc. Lond. 224B 209–21.Google Scholar
  55. Sutterlin, A.M. and Waddy, S. (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis).J. Fish. Res. Bd Can. 32 2441–6.Google Scholar
  56. Thorpe, J.E. (1988) Salmon migration.Sci. Prog. Oxf. 72 345–70.Google Scholar
  57. Webb, J.F. (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 79–98.Google Scholar
  58. Zottoli, S.J. and Danielson, P.D. (1989) Lateral line afferent and efferent systems of the goldfish with special reference to the Mauthner cell. In Coombs, S., Gorner, P. and Muntz, H., eds.The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 461–80.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • John Montgomery
    • 1
  • Sheryl Coombs
    • 2
  • Matthew Halstead
    • 1
  1. 1.School of Biological SciencesUniversity of AucklandAuckland
  2. 2.Parmly Hearing InstituteLoyola University of ChicagoUSA

Personalised recommendations