Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biotoxic activity in the Mucorales

Abstract

The toxigenicity of representatives of 15 species of Mucorales (Absidia glauca, Actinomucor elegans, Cunninghamella elegans, Helicostylum piriforme, Mortierella isabellina, Mortierella (Mucor) rammaniana, Mucor hiemalis, Mucor mucedo, Mucor spinosus, Phycomyces blakesleeanus, Rhizopus oligosporus, Rhizopus stolonifer, Syncephalastrum racemosum, Thamnidium elegans, Zygorhynchus moelleri) towards the larvae of brine shrimp (Artemia salina) and the growth of pea seedlings (Pisum sativum) and tobacco plants (Nicotiana tabacum) was evaluated. The fungi were cultivated on malt extract agar and aqueous solutions of the cultures were tested.Thamnidium elegans showed a marked toxic action towards brine shrimp (mortality: 74.1%) andPhycomyces, Actinomucor andSyncephalastrum were only weakly toxic. Length and weight of stems of pea seedlings were moderately reduced by extracts ofAbsidia, Cunninghamella, Zygorhynchus andThamnidium and to a lesser degree byMucor spinosus. Cunninghamella andMucor spinosus also inhibited the development of pea hypocotyls. The length of tobacco stems was reduced byMortierella ramanniana, Rhizopus stolonifer andCunninghamella elegans. Wilting or other toxic phenomena were never observed with both test plants. Considering the present results and data from literature it is suggested that species of Mucorales have only a weak toxigenicity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cole PJ, Cox RH. Handbook of Toxic Fungal Metabolites. New York/London/Toronto/Sydney/San Francisco: Academic Press, 1981.

  2. 2.

    Blakeslee AF, Gortner RA. On the occurrence of a toxin in juice expressed from the bread mould,Rhizopus nigricans (Mucor stolonifer). Biochem Bull 1913; 2: 542–44.

  3. 3.

    Gortner RA, Blakeslee AF. Observations on the toxin ofRhizopus nigricans. Am J Physiol 1914; 34: 353–67.

  4. 4.

    Gorlenko MV. The toxins of moulds. Am Rev Soviet Med 1948; 5: 163–64.

  5. 5.

    Rabie CJ, Lübben A, Schipper MAA, van Heerden FR, Fincham JE. Toxigenicity ofRhizopus species. Int J Food Microbiol 1985; 1: 263–70.

  6. 6.

    Steyn PS, Tuinman AA, van Heerden FR, van Rooyen PH, Wessels PL, Rabie CJ. The isolation, structure, and absolute configuration of the mycotoxin rhizonin A, a novel cyclic heptapeptide containing N-methyl-3-(3-furyl)alanine, produced byRhizopus microsporus. J chem Soc Chem Commun 1983: 47.

  7. 7.

    Wilson T, Rabie CJ, Fincham JE, Steyn PS, Schipper MAA. Toxicity of rhizonin A, isolated fromRhizopus microsporus, in laboratory animals. Food Chem Toxicol 1984; 22: 275–81.

  8. 8.

    Davey G, Smith JMB, Kalmakoff J. Purification and properties of a toxin isolated fromMortierella wolfii. Infect Immun 1973; 8: 882–86.

  9. 9.

    Davey G, Kalmakoff J. Evidence that the nephrotoxin from the fungusMortierella wolfii is a protein. Can J Microbiol 1974; 20: 1513–16.

  10. 10.

    Davis ND, Wagener RE, Morgan-Jones G, Diener UL. Toxigenic thermophilic and thermotolerant fungi. Appl Microbiol 1975; 29: 455–57.

  11. 11.

    Diener UL, Morgan-Jones G, Wagener RE, Davis ND. Toxigenicity of fungi from grain sorghum. Mycopathologia 1981; 75: 23–26.

  12. 12.

    Keyl AC, Lewis JC, Ellis JJ, Yates SG, Tookey HL. Toxic fungi isolated from tall fescue. Mycopath Mycol Appl 1967; 31: 327–31.

  13. 13.

    Harter LL, Weimer JL, Lauritzen JI. The decay of sweet potatoes (Ipomoea batatas) produced by different species ofRhizopus. Phytopathol 1921; 11: 279–84.

  14. 14.

    Mirocha CJ, Wilson EE. Hull rot disease of almonds. Phytopathol 1961; 51: 843–47.

  15. 15.

    Hoke SH, Carley CM, Johnson ET, Broski FH. Use of solid-phase extraction systems to improve the sensitivity ofArtemia bioassays for trichothecene mycotoxins. J Assoc Off Anal Chem 1987; 70: 661–63.

  16. 16.

    Harwig J, Scott PM. Brine shrimp (Artemia salina L.) larvae as a screening system for fungal toxins. Appl Microbiol 1971; 21: 1011–16.

  17. 17.

    Reiss J. Vergleichende Untersuchungen über die Toxizität einiger Mykotoxine gegenüber den Larven des Salinenkrebses (Artemia salina L.). Zbl Bakt I. Abt Orig B 1972; 155: 531–34.

  18. 18.

    Durackova Z, Betina V, Nemec P. Bioautographic detection of mycotoxins on thin-layer chromatograms. J Chromatogr 1976; 116: 155–61.

  19. 19.

    Durackova Z, Betina V, Hornikova B, Nemec P. Toxicity of mycotoxins and other fungal metabolites toArtemia salina larvae. Zbl Bakt II. Abt 1977; 132: 294–99.

  20. 20.

    Scott PM, Harwig J, Blanchfield BJ. ScreeningFusarium isolated from overwintered Canadian grains for trichothecenes. Mycopathologia 1980; 72: 175–80.

  21. 21.

    Harwig J, Scott PM, Stoltz DR, Blanchfield BJ. Toxins of molds from decaying tomato fruit. Appl Environ Microbiol 1979; 38: 267–74.

  22. 22.

    Reiss J. Effects of mycotoxins on higher plants, algae, fungi, and bacteria. In: Wyllie TD, Morehouse LG, eds. Mycotoxic Fungi, Mycotoxins, Mycotoxicoses: An Encyclopedic Handbook, Vol. 3. New York/Basel: Marcel Dekker, 1978: 119–143.

  23. 23.

    Barnum CC. The production of substances toxic to plants byPenicillium expansum Link. Phytopathol 1924; 14: 238–43.

  24. 24.

    Marasas WFO, Smalley EB, Bamburg JR, Strong FM. Phytotoxicity of T-2 toxin produced byFusarium tricinctum. Phytopathol 1971; 61: 1488–91.

Download references

Author information

Correspondence to Dr. J. Reiss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reiss, J. Biotoxic activity in the Mucorales. Mycopathologia 121, 123–127 (1993). https://doi.org/10.1007/BF01103580

Download citation

Key words

  • Brine shrimp text
  • Mucorales
  • Plant assays
  • Toxicity