Advertisement

Theoretical and Mathematical Physics

, Volume 98, Issue 3, pp 368–376 | Cite as

Calogero quantum problem, Knizhnik-Zamolodchikov equation, and Huygens principle

  • A. P. Veselov
Article

Abstract

The interrelations between Calogero quantum problem and Knizhnik-Zamolodchikov equation are described following Matsuo, Cherednik, Felder, and the author. As the basic tool of the considerations the Dunkl operator is used. The generalizations related to an arbitrary Coxeter group and the applications to the Hadamard problem about the hyperbolic equations with the Huygens principle are discussed.

Keywords

Huygens Hyperbolic Equation Basic Tool Coxeter Group Dunkl Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Calogero, J. Math. Phys. 1971, V. 12. P. 419–439.Google Scholar
  2. [2]
    J. Moser. Adv. Math. 1975. V. 16, P. 1–23.Google Scholar
  3. [3]
    M.A. Olshanetsky and A.M. Perelomov. Phys. Rep. 1983. V. 94. P. 313–404.Google Scholar
  4. [4]
    C.F. Dunkl. Trans. AMS. 1989. V. 311. P. 167–183.Google Scholar
  5. [5]
    G. Heckman. Progr. in Math. 1991. V. 101. P. 181–191.Google Scholar
  6. [6]
    V.G. Knizhnik and A.B. Zamolodchikov. Nucl. Phys. 1984. V. 247. P. 83–103.Google Scholar
  7. [7]
    A. Matsuo. KZ Type Equations and Zonal Spherical Functions Preprint of RIMS. Kyoto, 1991.Google Scholar
  8. [8]
    I. Cherednik. Doklady AN SSSR. 1989. V. 307 No 1. P. 27–34.Google Scholar
  9. [9]
    I. Cherednik. Invent. Math. 1991. V. 106. P. 411–431.Google Scholar
  10. [10]
    I. Cherednik. Monodromy representations of generalized KZ equation and Hecke algebras, Preprint ITP-89-74E. Kiev, 1989.Google Scholar
  11. [11]
    I. Cherednik. Integration of quantum many-body problems by affine KZ equation, Preprint RIMS. Kyoto, 1991.Google Scholar
  12. [12]
    G. Felder and A.P. Veselov. Shift operator for the Calogero-Sutherland quantum problem via the KZ equation, Preprint of FIM, Zuerich. ETH, 1993 (to appear in Comm. Math. Phys.).Google Scholar
  13. [13]
    E. Opdam. Invent. Math. 1989, V. 98. P. 1–18.Google Scholar
  14. [14]
    A.P. Veselov, K.L. Styrkas, and O.A. Chalykh. Theor. Math. Phys. 1993. V. 94. No 2. P. 182–196.Google Scholar
  15. [15]
    O.A. Chalykh and A.P. Veselov. Comm. Math. Phys. 1990. V. 126. P. 597–611.Google Scholar
  16. [16]
    Yu. Yu. Berest and A.P. Veselov. Uspekhi Mat. Nauk. 1993. V. 48 No 2. P. 181–182.Google Scholar
  17. [17]
    Yu. Yu. Berest and A. P. Veselov. Funct. Anal. Appl. 1994. V. 28. No 1. P. 1–15.Google Scholar
  18. [18]
    J. Hadamard. Lectures on Cauchy's problem. Cambridge, New Haven, 1923.Google Scholar
  19. [19]
    R. Courant and D. R. Hilbert. Methods of Math. Physics. Vol. 2. New York-London, 1962.Google Scholar
  20. [20]
    S.P. Novikov, Functional Anal. Appl. 1974. V. 8, No 3. P. 54–63.Google Scholar
  21. [21]
    N. Bourbaki. Groupes et Algebres de Lie. Chapitres 4–6. Hermann, Paris, 1969.Google Scholar
  22. [22]
    I.M. Krichever. Funct. Anal. Appl. 1980. V. 14. P. 45–56.Google Scholar
  23. [23]
    G. Heckman. Invent. Math. 1991. V. 103. P. 341–350.Google Scholar
  24. [24]
    J.E. Lagnese and K.L. Stellmacher. J. Math. Mech. 1967. V. 17. No 5. P. 461–472.Google Scholar
  25. [25]
    J.E. Lagnese. Proc. AMS. 1968. V. 19. P. 981–988.Google Scholar
  26. [26]
    V.I. Arnold. Catastrophe Theory. Moscow: Nauka, 1990.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. P. Veselov

There are no affiliations available

Personalised recommendations