Advertisement

Neurochemical Research

, Volume 15, Issue 11, pp 1097–1100 | Cite as

Effect of oxotremorine, physostigmine, and scopolamine on brain acetylcholine synthesis: A study using HPLC

  • N. Bertrand
  • A. Beley
Original Articles

Abstract

The synthesis rate of brain acetylcholine (ACh) was estimated in mice following i.v. administration of [3H]choline (Ch). The measurements were performed 1 min after the tracer injection, using the [3H]ACh/[3H]Ch specific radioactivity ratio as an index of ACh synthesis rate. Endogenous and labeled Ch and ACh were quantified using HPLC methodology. Oxotremorine and physostigmine (0.5 mg/kg, i.p.) increased the steady state concentration of brain ACh by +130% and 84%, respectively and of Ch by +60% (oxotremorine); they decreased ACh synthesis by 62 and 55%, respectively. By contrast, scopolamine (0.7 mg/kg, i.p.) decreased the cerebral content of Ch by −26% and of ACh by −23% without enhancing the synthesis of ACh. The results show the utility of HPLC methodology in the investigation of ACh turnover.

Key Words

Oxotremorine physostigmine scopolamine acetylcholine synthesis mouse brain HPLC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schuberth, J., Sparf, B., and Sundwall, A. 1969. A technique for the study of acetylcholine turnover in mouse brain in vivo. J. Neurochem.16:695–700.Google Scholar
  2. 2.
    Saelens, J. K., Simke, J. P., Schuman, J., and Allen, M. P. 1974. Studies with agents which influence acetylcholine metabolism in mouse brain. Arch. Int. Pharmacodyn.209:250–258.Google Scholar
  3. 3.
    Trabucchi, M., Cheney, D. L., Hanin, I., and Costa, E. 1975. Application of principles of steady-state kinetics to the estimation of brain acetylcholine turnover rate: effects of oxotremorine and physostigmine. J. Pharmacol. Exp. Ther.194:57–64.Google Scholar
  4. 4.
    Nordberg, A. 1978. Effect of oxotremorine on the apparent regional turnover of acetylcholine in mouse brain. J. Neurochem.30:383–389.Google Scholar
  5. 5.
    Karlen, B., Lundgren, G., Lundin, J., and Holmstedt, B. 1979. Effect of physostigmine and atropine on acetylcholine turnover in mouse brain. Arch. Pharm.308:61–65.Google Scholar
  6. 6.
    Moroni, F., Malthe-Sorenssen, D., Cheney, D. L., and Costa, E. 1978. Modulation of acetylcholine turnover in the septal-hippocampal pathway by electrical stimulation and lesioning. Brain Res.150:333–341.Google Scholar
  7. 7.
    Potter, P. E., Hadjiconstantinou, M., Meek, J. L., and Neff, N. H. 1984. Measurement of acetylcholine turnover rate in brain: an adjunct to a simple HPLC method for choline and acetylcholine. J. Neurochem.43:288–290.Google Scholar
  8. 8.
    Cheney, D. L., Costa, E., Hanin, I., Trabucchi, M., and Wang, C. T. 1975. Application of principles of steady-state kinetics to the in vivo estimation of acetylcholine turnover rate in mouse brain. J. Pharmacol. Exp. Ther.192:288–296.Google Scholar
  9. 9.
    Bluth, R., Langnickel, R., Morgenstern, R., and Oelszner, W. 1984. Comparison of two methods for estimating the acetylcholine turnover in discrete rat brain structures. Pharmacol. Biochem. Behav.20:169–174.Google Scholar
  10. 10.
    Jope, R. S., and Jenden, D. J. 1979. Choline and phospholipid metabolism and the synthesis of acetylcholine in rat brain. J. Neurosci. Res.4:69–82.Google Scholar
  11. 11.
    Bertrand, N., Bralet, J., and Beley, A. 1990. Turnover rate of brain acetylcholine using HPLC separation of the transmitter. J. Neurochem.55:27–30.Google Scholar
  12. 12.
    Beley, A., Zekhnini, A., Lartillot, S., Fage, D., and Bralet, J. 1987. Improved method for determination of acetylcholine, choline and other biogenic amines in a single brain tissue sample using HPLC and electrochemical detection. J. Liq. Chromatogr.10:2977–2992.Google Scholar
  13. 13.
    Zilversmit, D. B., 1960. The design and analysis of isotope experiments. Amer. J. Med.29:832–842.Google Scholar
  14. 14.
    Marta, M., Castellano, C., Oliviero, A., Pavone, F., Pagella, P. G., Brufani, M., and Pomponi, M. 1988. New analogs of physostigmine: alternative drugs for Alzheimer's disease? Life Sci.43:1921–1928.Google Scholar
  15. 15.
    Toide, K., and Arima, T. 1989. Effects of cholinergic drugs on extracellular levels of acetylcholine and choline in rat cortex, hippocampus and striatum studied by brain dialysis. European. J. Pharmacol.173:133–141.Google Scholar
  16. 16.
    Watanabe, H., and Shimizu, H. 1989. Effect of anticholinergic drugs on striatal acetylcholine release and motor activity in freely moving rats studied by brain microdialysis. Japan. J. Pharmacol.51:75–82.Google Scholar
  17. 17.
    Moye, T. B., and Vanderryn, J. 1988. Physostigmine accelerates the development of associative memory processes in the infant rat. Psychopharmacology.95:401–406.Google Scholar
  18. 18.
    Beninger, R. J., Wirsching, B. A., Jhamandas, K., and Boegman, R. J. 1989. Animal studies of brain acetylcholine and memory. Arch. Gerontol. Geriatr. Suppl. 1, 71–90.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • N. Bertrand
    • 1
  • A. Beley
    • 1
  1. 1.Laboratoire de Pharmacodynamie et de Physiologie PharmaceutiqueFaculté de PharmacieDijon, CedexFrance

Personalised recommendations