Neurochemical Research

, Volume 15, Issue 11, pp 1055–1063 | Cite as

Glutamate receptor changes in brain synaptic membranes from human alcoholics

  • E. K. Michaelis
  • W. J. Freed
  • N. Galton
  • J. Foye
  • M. L. Michaelis
  • I. Phillips
  • J. E. Kleinman
Original Articles

Abstract

Brains from human alcoholics and non-alcoholics were obtained shortly after death. The hippocampus was dissected, homogenized, and processed for the isolation of a synaptic membraneenriched fraction and the study ofl-[3H]glutamic acid and 3-((±)-2-carboxypiperazin-4-yl)-[1,23H]propyl-l-phosphonic acid ([3H]CPP) binding sites. The pharmacological characteristics ofl-[3H]glutamic acid binding to synaptic membranes isolated from hippocampus corresponded to the labeling of a mixture of N-methyl-d-aspartate (NMDA), kainate and quisqualic acid receptor sites. Synaptic membranes prepared from the hippocampus of individuals classified as alcoholics had significantly higher density of glutamate binding sites than identically prepared membranes from non-alcoholic individuals. In addition, there was a clear definition of a population ofl-glutamate binding sites (approx. 10% of total) in the membranes from alcoholics that had a higher affinity for the ligand than the major set of sites labeled in membranes from both alcoholics and non-alcoholics. Neither the age of the individuals at the time of death nor the time that elapsed between death and processing of brain tissue were significant factors in determining either recovery of purified synaptic membranes from brain homogenates orl-[3H]glutamate binding to synaptic membranes. In order to determine whether some of the changes inl-[3H]glutamic acid binding were due to alterations in binding at the NMDA receptor subtype, we also measured binding of [3H]CPP to extensively washed crude synaptosomal membranes. Membranes from brains of alcoholics had higher affinity (3-fold) for [3H]CPP but lower binding capacity (3-fold) when compared with those of non-alcoholics. These observations suggest selective changes among different glutamate receptor subtypes in human brain under conditions of chronic alcohol intake.

Key words

Alcoholism glutamate receptors NMDA receptors glutamate binding seizures hippocampus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalant, H. 1971. Tolerance to and dependence on some nonopiate psychotropic drugs. Pharmacol. Rev. 23:135–191.Google Scholar
  2. 2.
    Goldstein, D. B. 1976. Minireview: Pharmacological aspects of physical dependence on ethanol. Life Sciences 18:553–562.Google Scholar
  3. 3.
    Michaelis, E. K. and Michaelis, M. L. Physico-chemical interactions between alcohol and biological membranes,in Research Advances in Alcohol and Drug Problems, R. G. Smart, F. B. Glaser, Y. Israel, H. Kalant, R. E. Popham and W. Schmidt, eds. (Plenum, New York, 1983), Vol. 7, pp. 127–173.Google Scholar
  4. 4.
    Calentano, J. J., Gibbs, T. T., and Farb, D. H. 1988. Ethanol potentiates GABA-and glycine-induced chloride currents in chick spinal cord neurons. Brain Res. 455:377–390.Google Scholar
  5. 5.
    Allan, A. M. and Harris, R. A. 1986. Gamma-aminobuytric acid and alcohol actions: Neurochemical studies of long-sleep and shortsleep mice. Life Sci. 39:2005–2015.Google Scholar
  6. 6.
    Curtis, D. R. and Johnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69:97–188.Google Scholar
  7. 7.
    Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. 1987. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10:273–280.Google Scholar
  8. 8.
    Crunelli, V., Forda, S., and Kelly, J. S. 1984. The reversal potential of excitatory amino acid action on granule cells of the rat dentate gyrus. J. Physiol. 351:327–342.Google Scholar
  9. 9.
    Sloviter, R. S. 1985. A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Res. 330:150–153.Google Scholar
  10. 10.
    Adams, D. J., Gage, P. W., and Hamill, O. P. 1977. Ethanol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction. Nature 266:739–741.Google Scholar
  11. 11.
    Teichberg, V. I., Tal, N., Goldberg, O., and Luini, A. 1984. Barbiturates, alcohols and the CNS excitatory neurotransmission: Specific effects on the kainate and quisqualate receptors. Brain Res. 291:285–292.Google Scholar
  12. 12.
    Lovinger, D. M., White, G., and Weight, F. F. 1989. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724.Google Scholar
  13. 13.
    Hoffman, P. L., Rabe, C. S., Moses, F. and Tabakoff, B. 1989. N-Methyl-D-Aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52:1937–1940.Google Scholar
  14. 14.
    Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G. 1988. A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13:463–467.Google Scholar
  15. 15.
    Sugiyama, H., Ito, I., and Watanabe, M. 1989. Glutamate receptor subtypes may be classified into two major categories: A study on Xenopus oocytes injected with rat brain mRNA. Neuron 3:129–132.Google Scholar
  16. 16.
    Watkins, J. C., Krogsgaard-Larsen, P., and Honore, T. 1990. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11:25–33.Google Scholar
  17. 17.
    Bekkers, J. M. and Stevens, C. F. 1989. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–233.Google Scholar
  18. 18.
    Freed, W. J. and Michaelis, E. K. 1978. Glutamic acid and ethanol dependence. Pharmacol. Biochem. Behav. 8:509–514.Google Scholar
  19. 19.
    Grant, K. A. and Tabakoff, B. 1989. Blockade of seizures in ethanol-dependent mice by the NMDA receptor antagonist MK-801. Alcoholism: Clin. Exper. Res. 13:316.Google Scholar
  20. 20.
    Michaelis, E. K., Mulvaney, J. J., and Freed, W. J. 1978. Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity. Biochem. Pharmacol. 27:1685–1691.Google Scholar
  21. 21.
    Michaelis, E. K., Roy, S., Galton, N., Cunningham, M., LeCluyse, E., and Michaelis, M. L. 1987. Correlation of glutamate binding activity with glutamate-binding protein immunoreactivity in the brain of control and alcohol-treated rats. Neurochem. Int. 11:209–218.Google Scholar
  22. 22.
    Chen, J.-W., Cunningham, M. D., Galton, N., and Michaelis, E. K. 1988. Immune labelling and purification of a 71 kDa glutamate binding protein from brain synaptic membranes. J. Biol. Chem. 263:417–427.Google Scholar
  23. 23.
    Michaelis, E. K., Chen, J.-W., Stormann, T. M., and Roy, S. Molecular and functional characterization of a brain neuronal membrane glutamate-binding protein,in Neurotransmitters and COrtical Function, M. Avoli, ed., (Plenum, New York, 1988) pp. 71–83.Google Scholar
  24. 24.
    Michaelis, E. K., Michaelis, M. L., Chang, H. H., and Kitos, T. E. 1983. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes, synaptic membranes, and microsomes. J. Biol. Chem. 258:6101–6108.Google Scholar
  25. 25.
    Cunningham, M. D. and Michaelis, E. K. 1990. Solubilization and partial purification of 3-((±)-2-carboxypiperazin-4-yl)-[1,23H] propyl-1-phosphonic acid ([3H]CPP recognition proteins from rat brain synaptic membranes. J. Biol. Chem. 265:7768–7778.Google Scholar
  26. 26.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  27. 27.
    Perouansky, M. and Grantyn, R. 1989. Separation of quisqualate- and kainate-selective glutamate receptors in cultured neurons from the rat superior colliculus. J. Neurosci. 9:70–80.Google Scholar
  28. 28.
    Zorumski, C. F. and Yang, J. 1988. AMPA, kainate, and quisqualate activate a common receptor-channel complex on embryonic motoneurons. J. Neurosci. 8:4277–4286.Google Scholar
  29. 29.
    Verdoorn, T. A., Kleckner, N. W. and Dingledine, R. 1989. N-Methyl-D-Aspartate/Glycine and Quisqualate/Kainate receptors expressed inXenopus oocytes: antagonist pharmacology. Molec. Pharmacol. 35:360–368.Google Scholar
  30. 30.
    Schoepp, D. D., and Johnson, B. G. 1988. Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acidsensitive quisqualate receptors coupled to phosphoinositide hydrolysis of rat hippocampus. J. Neurochem. 50:1605–1613.Google Scholar
  31. 31.
    Blackstone, C. D., Suppatopone, S., and Snyder, S. H. 1989. Inositol phospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. 86:4316–4320.Google Scholar
  32. 32.
    Kornhuber, J., Mack-Burkhardt, F., Kornhuber, M. E., and Riederer, P. 1989. [3H]MK-801 binding sites in post-mortem human frontal cortex. Eur. J. Pharmacol. 162:483–490.Google Scholar
  33. 33.
    Savage, D. D., Werling, L. L., Nadler, J. V., and McNamara, J. O. 1984. Selective and reversible increase in the number of quisqualate-sensitive glutamate binding sites on hippocampal synaptic membranes after angular bundle kindling. Brain Res. 307:332–335.Google Scholar
  34. 34.
    Iadarola, M. J., Nicoletti, F., Naranjo, J. R., Putnam, F., and Costa, E. 1986. Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Brain Res. 374:174–178.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • E. K. Michaelis
    • 1
  • W. J. Freed
    • 2
  • N. Galton
    • 1
  • J. Foye
    • 1
  • M. L. Michaelis
    • 1
  • I. Phillips
    • 2
  • J. E. Kleinman
    • 2
  1. 1.Department of Pharmacology and Toxicology and Center for Biomedical ResearchUniversity of KansasLawrence
  2. 2.NIMH Neurosciences Center at St. Elizabeth'sWashington, D.C.

Personalised recommendations