Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Sulfur and oxygen isotope ratios in sulfate during an acidification reversal study at Lake Gårdsjön, Western Sweden

  • 95 Accesses

  • 26 Citations

Abstract

The reversibility of acidification is being investigated in a full scale catchment manipulation experiment at Lake Gårdsjön on the Swedish west coast using isotopes as environmental tracers. A 6300 m2 roof over the catchment enables researchers to control depositional variables. Stable S isotope values were determined in bulk deposition, throughfall, runoff, groundwater and soil-extracted water during one year prior to and two years of experimental control. Data collected prior to experimental control suggest that the inorganic SO 4 2− pool within the catchment has a homogeneousδ 34S value of about+5.5‰. Sprinkling of water spiked with small amounts of sea-water derived SO 4 2− started in April 1991. Theδ 34S value of this SO 4 2− is around+19.5‰. Since April 1991, the SO 4 2− concentration in runoff has decreased by some 30%, however, theδ 34S value have increased by only 0.5‰. This suggests mixing of sprinkling water S with a large reservoir of S in the catchment. Oxygen isotopes in SO 4 2− suggest that less than one third of the SO 4 2− in runoff is secondary SO 4 2− formed within the soil profile. This is, however, no evidence for net mineralization of S. The SO 4 2− in runoff in the roofed catchment is a mixture of SO 4 2− previously adsorbed in the soil, mineralized organic S and SO 4 2− from the sprinkler water. Calculations based on isotope data indicate that the turnover time of S within the catchment is on the order of decades. Since SO 4 2− facilitates base cation flow, the acidification reversal will take a much longer time than concentration decreases of SO 4 2− would suggest.

This is a preview of subscription content, log in to check access.

References

  1. Andersson, F. and Olsson, B. (eds.): 1985,Lake Gårdsjön: An Acid Forest Lake and its Catchment. Ecological Bulletins 37, Publishing House of the Swedish Research Councils, Stockholm.

  2. Andersson, P., Torssander, P. and Ingri, J.: 1992, ‘Sulphur Isotope Ratios in Sulphate and Oxygen Isotopes in Water From a Small Watershed in Central Sweden;Hydrobiol.,235/236, 205–217.

  3. Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P. and Rees, C. E.: 1986, ‘Sulfur and Oxygen Isotopes of Sulfate in Precipitation and Lake Water, Quebec, Canada,’Appl. Geochem. 1, 601–606.

  4. Castleman, Jr., A. W., Munkelwitz, H. R. and Manowitz, B.: 1973, ‘Contribution of Volcanic Sulfur Compounds to the Stratospheric Aerosol Layer’,Nature 244, 345–346.

  5. Chiba, H. and Sakai, H.: 1985, ‘Oxygen Isotope Exchange Rate Between Dissolved Sulfate and Water at Hydrothermal Temperatures,’Geochim. Cosmochim. Acta 49, 993–1000.

  6. Christophersen, N. and Wright, R. F.: 1981, ‘Sulfate Budget and a Model for Sulfate Concentrations in Stream Water at Birkeness, a Small Forested Catchment in Southernmost Norway,’Water Resourc. Res. 17, 377–389.

  7. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. and Zak, I.: 1980,‘Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretation,’Chem. Geol. 28, 199–260.

  8. Fuller, R. D., Mitchell, M. J., Krouse, H. R., Wyskowski, B. J. and Driscoll, C. T.: ‘Stable Sulfur Isotope Ratios as a Tool for Interpreting Ecosystem Sulfur Dynamics,’ 1986a,Water, Air, and Soil Pollut. 28, 163–171.

  9. Fuller, R. D., Driscoll, C. T., Schindler, S. C. and Mitchell, M. J.: 1986b, ‘A Simulation Model of Sulfur Transformations in Forested Spodosols,’Biogeochem. 2, 313–328.

  10. Gélineau, M., Carignan, R. and Tessier, A.: 1989, ‘Study of the Transit of Sulfate in a Canadian Shield Lake Watershed with Stable Oxygen Isotope Ratios,’Appl. Geochem. 4, 195–201.

  11. Hedin, L. O., Granat, L., Likens, G. E., Buishand, T. A., Galloway, J. N., Butler, T. J. and Rodhe, H.: 1994, ‘Steep Declines in Atmospheric Base Cations in Regions of Europe and North America,’Nature 367, 351–354.

  12. Hesslein, R. H., Capel, M. J. and Fox, D. E.: 1988, ‘Sulfur Isotopes in Sulfate in the Inputs and Outputs of a Canadian Shield Watershed,’Biogeochem. 5, 263–273.

  13. Hultberg, H., Andersson, B. I. and Moldan F.: 1992, ‘The Covered Catchment — An Experimental Approach to Reversal of Acidification in a Forest Ecosystem’, in L. Rasmussen, T. Brydges and P. Mathy,Experimental Manipulations of Biota and Biogeochemical Cycling in Ecosystem, Ecosystems Research Report 4, Commission of the European Communities, pp. 46–54.

  14. Hultberg H. and Grennfelt P.: 1992, ‘Sulphur and Seasalt Deposition as Reflected by Throughfall and Runoff Chemistry in Forested Catchments,’Environ. Pollut. 75, 215–222.

  15. IVL:Yearly Report, 1991, Institutet för vatten och Luftvårdsforskning, Gothenburg, Sweden.

  16. Kelly, D.P.: 1982, ‘Biogeochemistry of the Ohemolithotrophic Oxidiation of Inorganic Sulfur,’Phil. Trans. Royal. Soc. London B 298, 449–528.

  17. Krouse, H.R. and Case, J.W.: 1981, ‘Sulphur Isotope Ratios in Water, Air, Soil and Vegetation Near Teepee Creek Gas Plant, Alberta’,Water, Air, and Soil Pollut. 15, 11–28.

  18. Krouse, H.R. and Grinenko, V.A. (eds.): 1991,Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. Scope43, John Wiley &; Sons, Chichester, UK.

  19. Krouse, H.R. and Tabatabai, M.A.: 1986, ‘Stable Sulphur Isotopes’, in M.A. Tabatabai. (ed.),Sulfur in Agriculture, Agronomy Monogr. No.27, Soil Sci. Soc Amer., Madison, WI, pp. 169–205.

  20. Krouse, H.R. and Van Everdingen, R.O.: 1984, ‘Delta34S Variations in Vegetation and Soil Exposed to Intense Biogenic Sulphide Emissions Near Paige Mountain, N.W.T., Canada,’Water, Air, Soil Pollut. 23, 61–67.

  21. Kusakabe, M., Rafter TA., Stout, J.D. and Collie, T.W.: 1976, ‘Sulfur Isotopie Variations in Nature. Part 12. Isotopic of Sulfur Extracted from Some Plants Soils, and Related Materials,’N.Z.J. Sci. 19, 433–440.

  22. Likens, G.E., Borman, F.H., Pierce, R.S., Eaton, J.S. and Johnson, N.M.: 1977,Biogeochemistry of a Forested Ecosystem, Springer-Verlag, New York.

  23. Lindberg S.E. and Garten Jr., C.T.: 1988, ‘Sources of Sulfur in Forest Canopy Throughfall,’Nature 336, 148–151

  24. Lloyd, R.M.: 1967, ‘Oxygen-18 Composition of Oceanic Sulfate,’Science 154, 1228–1231.

  25. Mayer, B., Fritz, P., Knief, K., Li, G., Fischer, M., Rehfuess, K-E. and Krouse, H.R.: 1991a, ‘Evallating Pathways of Sulphate between the Atmosphere and Hydrosphere using Stable Sulphur and Oxygen Isotope Data,’ InIsotope Techniques in Water Resources Development 1991, IAEA, Vienna, pp. 13–17.

  26. Mayer, B., Fritz, P., Li, G., Fischer, M., Rehfuess, K-E. and Krouse, H.R.: 1991b, ‘Sulphur Dynamics in Forest Soils in the South of the Federal Republic of Germany,’ inStable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies. Proceedings Series, IAEA, Vienna, pp. 581–591.

  27. Mayer, B.: 1993,Untersuchungen zur Isotopengeochemie des Schwefels in Waldbödeln und neu gebildetem Grundwasser unter Wald, GSF-Bericht 2/93, Neuherberg.

  28. Mitchell, M.J., Driscoll, C.T., Fuller, R.D., David, M.B. and Likens, G.E.: 1989, ‘Effect of Whole-Tree Harvesting on the Sulfur Dynamics of a Forest Soil,’Soil Sci. Soc. Am. J. 53, 933–940.

  29. Mitchell, M.J., David, M.B. and Harrison, R.B.: 1992a, ‘Sulfur Dynamics of Forest Ecosystems’, in R. W. Howarth, J. W. B. Stewart and M. V. Nanov (eds.),Sulfur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies, SCOPE 48, John Wiley &; Sons, Chichester, UK, pp. 215–254.

  30. Mitchell, M.J., Harrison, R.B., Fitzgerald, J.W., Johnson, D.W., Lindberg, S.E., Zhang, Y. and Autry A.: 1992b, ‘Sulfur Distribution and Cycling in Forest Ecosystems’, in Johnson, D. W. and Lindberg, S. E. (eds.),Atrospheric Deposition and Forest Nutrient Cycling, Springer-Verlag, Berlin, pp. 90–129.

  31. Mitzutani, Y. and Rafter, T. A.: 1969, ‘Oxygen Isotopic Composition of Sulfates. 5 Isotopic Composition of Sulfate in Rain Water, Bracefield, New Zealand’,N.Z.J. Sci. 12, 69–80.

  32. Mörth, C. M. and Torssander, P.: Sulfur Isotopes in a Roof covered Forested Catchment at Lake Gårdsjön, Western Sweden,IAH sel. pap. 4 (in press).

  33. Nehring, N. L., Bowen, P. A. and Thrusdell, A. T.: 1977, ‘Techniques for the Conversion to Carbon Dioxide of Oxygen from Dissolved Sulfate in Thermal Waters’,Geothermics 5, 63–66.

  34. Nriagu, J. O. and Coker, R. D.: 1978, ‘Isotopic Composition of Sulfur in Precipitation Within the Great Lakes Basin’,Tellus 30, 365–375.

  35. Nriagu, J. O. and Coker, R. D.: 1983, ‘Sulfur in Sediments Chronicles Past Changes in Lake Acidification’,Nature,303, 692–694.

  36. Nriagu, J. O., Rees, C. E., Mekhityeva, V. L., Lein A. Yu., Fritz, P., Drimmie, R. J., Pankina, R. G., Robinson, B. W. and Krouse, H. R.: 1991 ‘Hydrosphere’, in H. R. Krouse and V. A. Grinenko (eds.): 1991,Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. Scope 43, John Wiley &; Sons, Chichester, UK, pp. 177–265.

  37. Nyberg, L., Bishop, K. and Rodhe, A.: 1993, ‘Importance of Hydrology in the Reversal of Acidification in till Soils, Gardsjoen, Norway’,Appl. Geochem. Suppl. Issue No. 2, 61–66.

  38. Olsson, B., HallbÄcken, L., Johansson, S., Melkerud, P.-A., Nilsson, S. I. and Nilsson T.: 1985, ‘The Lake Gårdsjön area — Physiographical and Biological Features’, in: F. Andersson and B. Olsson (eds.),Lake Gårdsjön: An Acid Forest Lake and its Catchment, Ecological Bulletins 37, Publishing House of the Swedish Research Councils, Stockholm, pp. 10–28.

  39. Rafter, T. A.: 1967, ‘Oxygen Isotopic Composition of Sulphates. Part 1. A Method for the Extraction of Oxygen and its Quantitative Conversion to Carbon Dioxide for Isotope Radiation Measurements’,N.Z.J. Sci. 10, 493–510.

  40. Rajan, S. S. S.: 1978, ‘Sulfate Adsorbed on Hydrous Alumina Ligands Displaced and Changes in Surface Charge’,Soil Sci. Soc. Am. J. 42, 39–44.

  41. Reuss, J. O. and Johnson, D. W.: 1986,Acid Deposition and the Acidification of Soils and Waters. Ecological Studies 59, Springer-Verlag, New York.

  42. Saltzman, E. S., Brass, G. W. and Price, D. A.: 1983,Geophys. Res. Lett. 10, 513–516.

  43. Singh, B. R.: 1984, ‘Sulphate Sorbtion by Acid Forest Soils. 3. Desorption of Sulphate from Adsorbed Surfaces as a Function of Time, Desorbing Ion, pH, and Amount of Adsorption’,Soil Science 138, 346–353.

  44. Stam, A. C., Mitchell, M. J., Krouse, H. R. and Kahl, J. S.: 1992 ‘Stable Sulfur Isotopes of Sulfate in Precipitation and Stream Solutions in a Northern Hardwood Forest Watershed’,Water Resourc. Res. 28, 231–236.

  45. Tabatabai, M. A.: 1982, ‘Sulfur’, in Page, A. L., Miller, R. H. and Keeney, D. R. (eds.),Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Agronomy, number 9 (part 2), American Society of Agronomy, Madison, Wiscounsin, pp. 501–538.

  46. Taylor, B. E., Wheeler, M. C. and Nordstrom, D. K.: 1984, ‘Isotope Composition of Sulfate in Acid Mine Drainage as Measure of Bacterial Oxidation’,Nature 308, 538–541.

  47. Toran, L. and Harris, R. F.: 1989, ‘Interpretation of Sulfur and Oxygen Isotopes in Biological and Abiological Sulfide Oxidation’,Geochim. Cosmochim. Acta 53, 2341–2348.

  48. Trembaczowski, A.: 1991, ‘Sulphur and Oxygen Isotopes Behaviour in Sulphates of Atmospheric Groundwater System. Observations and Model’,Nordic Hydrol. 22, 49–66.

  49. Van Everdingen, R. O. and Krouse, H. R.: 1985, ‘Isotope Composition of Sulfates Generated by Bacterial and Abiological Oxidation’,Nature 315, 395–396.

  50. Van Stempvoort, D. R., Reardon, E. J. and Fritz, P.: 1990, ‘Fractionation of Sulfur and Oxygen Isotopes in Sulfate by Soil Sorption’,Geochim. Cosmochim. Acta 54, 2817–2826.

  51. Van Stempvoort, D. R., Fritz, P. and Reardon, E. J.: 1992, ‘Sulfate Dynamics in Upland Forest Soils, Central and Southern Ontario, Canada — Stable Isotope Evidence’,Appl. Geochem. 7, 159–175.

  52. Winner, W. E., Bewley, J. D., Krouse, H. R. and Brown, H. M.: 1978, ‘Stable Sulfur Isotope Analysis of SO2 Pollution Impact on Vegetation’,Oecologia 36, 351–361.

  53. Wright, R. F., Lotse, E. and Semb, A. 1988, ‘Reversibility of Acidification Shown by Whole Catchment Experiments’,Nature 334, 670–675.

  54. Wright, R. F., Lotse, E. and Semb, A.: 1993, ‘Rain Project-Results after 8 Years of Experimentally Reduced Acid Deposition to a Whole Catchment’,Can. J. Fish. Aquat. Sci. 50, 258–268.

  55. Yanagisawa, F. and Sakai, H.: 1983, ‘Precipitation of SO2 for Sulphur Isotope Ratio Measurements by Thermal Decomposition of BaSO4-V2O5-SiO2 Mixtures’,Anal. Chem. 55, 985–987.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mörth, C.-., Torssander, P. Sulfur and oxygen isotope ratios in sulfate during an acidification reversal study at Lake Gårdsjön, Western Sweden. Water Air Soil Pollut 79, 261–278 (1995). https://doi.org/10.1007/BF01100441

Download citation

Keywords

  • SO42
  • Isotope Ratio
  • Oxygen Isotope
  • Base Cation
  • Turnover Time