## Abstract

This article contains an exposition of fundamental results of the theory of boundary-value problems for systems of linear and nonlinear ordinary differential equations. In particular, criteria are given for problems with functional, many-point, and two-point boundary conditions to be solvable and well-posed, as well as methods of finding approximate solutions. We also examine questions of existence, uniqueness, and stability of periodic and bounded solutions of nonautonomous differential systems.

This is a preview of subscription content, log in to check access.

## Literature cited

- 1.
N. V. Azbelev, “On some trends in generalizations of the differential equation,” Differents. Uravn.,

**21**, No. 8, 1291–1304 (1985). - 2.
N. V. Azbelev and V. P. Maksimov, “A priori estimates of solutions of the Cauchy problem and solvability of boundary-value problems for equations with retarded argument,” Differents. Uravn.,

**15**, No. 10, 1731–1747 (1979). - 3.
N. V. Azbelev and V. P. Maksimov, “Equations with retarded argument,” Differents. Uravn.,

**18**, No. 12, 2027–2050 (1982). - 4.
N. V. Azbelev and L. F. Rakhmatullina, “Functional-differential equations,” Differents. Uravn.,

**14**, No. 5, 771–797 (1978). - 5.
M. T. Ashordiya, “On a many-point boundary-value problem for a system of generalized ordinary differential equations,” Soobshch. Akad. Nauk Gruz. SSR,

**115**, No. 1, 17–20 (1984). - 6.
M. T. Ashordiya, “On a nonlinear boundary-value problem for a system of generalized ordinary differential equations,” Soobshch. Akad. Nauk Gruz. SSR,

**118**, No. 2, 261–264 (1985). - 7.
M. T. Ashordiya, “On the structure of the set of solutions of the Cauchy problem for a system of generalized ordinary differential equations,” Proceedings of the Vekua Institute of Applied Mathematics, Tbilisi State University,

**17**, 5–16 (1986). - 8.
D. G. Bitsadze and I. T. Kiguradze, “On well-posedness for boundary-value problems for systems of ordinary differential equations,” Soobshch. Akad. Nauk Gruz. SSR,

**111**, No. 2, 241–244 (1983). - 9.
D. G. Bitsadze and I. T. Kiguradze, “On the stability of the set of solutions of nonlinear boundary-value problems,” Differents. Uravn.,

**20**, No. 9, 1495–1501 (1984). - 10.
N. I. Vasil'ev, “Some boundary-value problems for a system of two first-order differential equations. I,” Latvian Mathematical Yearbook,

**5**, 11–24 (1969). - 11.
N. I. Vasil'ev, “Some boundary-value problems for a system of two first-order differential equations. II.” Latvian Mathematical Yearbook,

**6**, 31–39 (1969). - 12.
N. I. Vasil'ev and Yu. A. Klokov, Foundations of the Theory of Boundary-Value Problems for Ordinary Differential Equations [in Russian], Zinatne, Riga, (1978).

- 13.
R. V. Gamkrelidze and G. L. Kharatishvili, “Extremal problems in linear topological spaces,” Izv. Akad. Nauk SSSR, Ser. Mat.,

**33**, No. 4, 781–839, (1969). - 14.
Sh. M. Gelashvili, “On a boundary-value problem for systems of functional-differential equations,” Arch. Math.,

**20**, No. 4, 157–168 (1984). - 15.
Sh. M. Gelashvili and I. T. Kiguradze, “On a method of numerical solution of boundary-value problems for systems of ordinary differential equations,” Soobshch. Akad. Nauk Gruz. SSR,

**115**, No. 3, 469–472 (1984). - 16.
G. N. Zhevlakov, Yu. V. Komlenko, and E. L. Tonkov, “On the existence of solutions of nonlinear ordinary differential equations with linear boundary conditions,” Differents. Uravn.

**4**, No. 10, 1814–1820 (1968). - 17.
M. A. Kakabadze, “On a problem with integral conditions for a system of ordinary differential equations,” Mat. Čas.

**24**, No. 3, 225–237 (1974). - 18.
M. A. Kakabadze, “On a singular boundary-value problem for a system of ordinary differential equations,” Dokl. Akad. Nauk SSSR,

**217**, No. 6, 1259–1262 (1974). - 19.
M. A. Kakabadze and I. T. Kiguradze, “On a boundary-value problem for a system of ordinary differential equations,” Differents. Uravn.,

**7**, No. 9, 1611–1616 (1971). - 20.
L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, New York (1982).

- 21.
B. V. Kvedaras, A. V. Kibenko, and A. I. Perov, “On some boundary-value problems,” Lit. Mat. Sb.,

**5**, No. 1, 69–84 (1965). - 22.
I. T. Kiguradze, “On the singular Nicoletti problem,” Dokl. Akad. Nauk SSSR,

**86**, No. 4, 769–772 (1969). - 23.
I. T. Kiguradze, “On some nonlinear boundary-value problems (I),” Bul. Inst. Politehn. Iasi,

**16**, No. 3–4, 57–65 (1970). - 24.
I. T. Kiguradze, “On a boundary-value problem for a system of two differential equations,” Tr. Tbilissk. Univ.,

**1(137)A**, 77–87 (1971). - 25.
I. T. Kiguradze, “On periodic solutions of a system of ordinary differential equations with singularities,” Dokl. Akad. Nauk SSSR,

**198**, No. 2, 286–289 (1971). - 26.
I. T. Kiguradze, “On some nonlinear boundary-value problems (II),” Bul. Inst. Politehn. Iasi,

**18**, No. 3–4, 95–107 (1972). - 27.
I. T. Kiguradze, Some Singular Boundary-Value Problems for Ordinary Differential Equations [in Russian], Tbilissk. Univ. Press (1975).

- 28.
I. T. Kiguradze, “On a periodic boundary-value problem for a two-dimensional differential system,” Differents. Uravn.,

**13**, No. 6, 996–1007 (1977). - 29.
I. T. Kiguradze, “On periodic solutions of a system of nonlinear ordinary differential equations,” Usp. Mat. Nauk,

**39**, No. 4, 137–138 (1984). - 30.
I. T. Kiguradze, “On two-point boundary-value problems for systems of nonlinear ordinary differential equations,” In: Ninth International Conference on Nonlinear Oscillations. Vol. 1 [in Russian], 168–173, Naukova Dumka, Kiev (1984).

- 31.
I. T. Kiguradze, “On many-point boundary-value problems for systems of ordinary differential equations,” Proceedings of the Extended Session of the Seminar of the Vekua Institute of Applied Mathematics, Tbilisi State Univ.,

**1**, No. 3, 54–60 (1985). - 32.
L. T. Kiguradze, “On periodic solutions of systems of nonautonomous ordinary differential equations,” Mat. Zametki,

**39**, No. 4, 562–575 (1986). - 33.
I. T. Kiguradze and N. R. Lezhava, “On some nonlinear two-point boundary-value problems,” Differents. Uravn.,

**10**, No. 12, 2147–2161 (1974). - 34.
I. T. Kiguradze and B. Puzha, “On some boundary-value problems for a system of ordinary differential equations,” Differents. Uravn.,

**12**, No. 12, 2139–2148 (1976). - 35.
Yu. A. Klokov, “Uniqueness of the solution of boundary-value problems for a system of two first-order differential equations,” Differents. Uravn.,

**8**, No. 8, 1377–1385 (1972). - 36.
Yu. V. Komlenko, “A two-sided method of constructing a periodic solution of a system of ordinary first-order differential equations,” In: Problems of the Modern Theory of Periodic Motions [in Russian], 29–38, Izhevsk (1981).

- 37.
M. A. Krasnosel'skii, Translation along Trajectories of Differential Equations, American Mathematical Society Translations, Vol. 19 (1968).

- 38.
M. A. Krasnosel'skii and S. G. Krein, “On the averaging principle in nonlinear mechanics,” Usp. Mat. Nauk,

**10**, No. 3, 147–152 (1955). - 39.
J. Kurzweil and Z. Vorel, “On continuous dependence of the solutions of differential equations on a parameter,” Czechosl. Mat. J.,

**7**, No. 4, 568–583 (1957). - 40.
A. Yu. Levin, “Passage to the limit for nonsingular systems\(\dot X = A_n (t)X\),” Dokl. Akad. Nauk SSSR,

**176**, No. 4, 774–775 (1967). - 41.
N. R. Lezhava, “On solvability of a nonlinear problem for a system of two differential equations,” Soobshch. Akad. Nauk Gruz. SSR,

**68**, No. 3, 545–547 (1972). - 42.
A. Ya. Lepin, “Application of topological methods to nonlinear boundary-value problems for ordinary differential equations,” Differents. Uravn.,

**5**, No. 8, 1390–1397 (1969). - 43.
A. Ya. Lepin and A. D. Myshkis, “On an approach to nonlinear boundary-value problems for ordinary differential equations,” Differents. Uravn.,

**3**, No. 11, 1882–1888 (1967). - 44.
A. Ya. Lepin and V. D. Ponomarev, “Continuous dependence of the solution of boundary-value problems for ordinary differential equations,” Differents. Uravn.

**9**, No. 4, 626–629 (1973). - 45.
G. N. Mil'shtein, “On a boundary-value problem for a system of two differential equations,” Differents. Uravn.,

**1**, No. 12, 1628–1639 (1965). - 46.
A. I. Perov, “Periodic, almost-periodic, and bounded solutions of the differential equation

*dx/dt*=*f(t,x)*, Dokl. Akad. Nauk SSSR,**132**, No. 3, 531–534 (1960). - 47.
A. I. Perov, “On a boundary-value problem for a system of two differential equations,” Dokl. Akad. Nauk SSSR,

**144**, No. 3, 493–496 (1962). - 48.
A. I. Perov and A. V. Kibenko, “On a general method of studying boundary-value problems,” Izv. Akad. Nauk SSSR, Ser. Mat.,

**30**, No. 2, 249–264 (1966). - 49.
N. N. Petrov, “Some sufficient conditions for continuous dependence of the solution of a differential equation on a parameter,” Vestnik Leningrad. Univ., Mat. Mekh. Astron., No. 19, 26–40 (1962).

- 50.
N. N. Petrov, “On continuity of the solutions of differential equations over a parameter,” Vestnik Leningrad. Univ., Mat. Mekh. Astron., No. 7, 29–36 (1964)

- 51.
N. N. Petrov, “Necessary conditions for continuity over a parameter for certain classes of equations,” Vestnik Leningrad. Univ., Mat. Mekh. Astron., No. 1, 47–53 (1965).

- 52.
V. A. Pliss, Nonlocal Problems of the Theory of Oscillations, Academic Press, New York (1966).

- 53.
V. D. Ponomarev, “Existence of a solution of a boundary-value problem with functional boundary condition,” Differents. Uravn.

**9**, No. 12, (1973). - 54.
V. D. Ponomarev, “On local uniqueness of the solution of boundary-value problems,” Mat. Zametki,

**15**, No. 6, 891–895 (1974). - 55.
B. Puzha, “On a singular boundary-value problem for a system of ordinary differential equations,” Arch. Math.,

**13**, No. 4, 207–226 (1977). - 56.
B. Puzha, “On solvability of some boundary-value problems for systems of ordinary differential equations,” Scr. Fac. Sci. Natur. UJEP Brun., No. 8, 411–426 (1980).

- 57.
F. Zh. Sadyrbaev, “On a two-point boundary-value problem for a system of ordinary first-order differential equations,” Latvian Mathematical Yearbook,

**23**, 131–136 (1979). - 58.
F. Zh. Sadyrbaev, “On nonlinear boundary-value problems for a system of two ordinary first-order differential equations,” In: Functional Methods in the Equations of Mathematical Physics [in Russian], 59–62, Moscow (1980).

- 59.
A. M. Samoilenko, “Study of a differential equation with ‘nonregular’ right-hand side,” Abhandlungen der deutschen Akademie der Wissenschaften in Berlin, Klasse Math. Phys. und Tech., No. l, 106–113 (1965).

- 60.
A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods of Studying the Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1986).

- 61.
Yu. V. Trubnikov and A. I. Perov, Differential Equations with Monotonic Nonlinearities [in Russian], Nauka i Tekhnika, Minsk (1986).

- 62.
F. Hartman, Ordinary Differential Equations, [Russian translation], Mir, Moscow (1970).

- 63.
A. Ya. Khokhryakov, “On the existence and estimation of the solution of a periodic boundary-value problem for a system of ordinary differential equations,” Differents. Uravn.,

**2**, No. 10, 1300–1306 (1966). - 64.
V. A. Chechik, “Study of systems of ordinary differential equations with a singularity,” Tr. Mosk. Mat. Obshch.,

**8**, 155–198 (1959). - 65.
B. L. Shekhter, “On a boundary-value problem for a system of ordinary differential equations,” Soobshch. Akad. Nauk Gruz. SSR,

**80**, No. 3, 541–544 (1975). - 66.
B. L. Shekhter, “On a boundary-value problem for two-dimensional discontinuous differential systems,” Proceedings of the Vekua Institute of Applied Mathematics, Tbilisi State Univ.,

**8**, 79–161 (1980). - 67.
A. I. Shindyapin, “On a boundary-value problem for a singular equation,” Differents. Uravn.,

**20**, No. 3, 450–455 (1984). - 68.
Z. Artstein, “Continuous dependence on parameters: on the best possible results,” J. Diff. Eqs.,

**19**, No. 2, 214–225 (1975). - 69.
R. Conti, “Equazioni differenziali ordinarie quasilineari con condizioni lineari,” Ann. Mat. Pura ed Appl.,

**57**, 49–61 (1962). - 70.
R. Conti, “Recent trends in the theory of boundary-value problems for ordinary differential equations,” Boll. Unione Mat. Ital.,

**22**, No. 2, 135–178 (1967). - 71.
M. Fukuhara, “Sur une généralisation d'un thórème de Kneser,” Proc. Jap. Acad.,

**29**, 154–155 (1953). - 72.
R. E. Gaines and J. Mawhin, “Ordinary differential equations with nonlinear boundary conditions,” J. Diff. Eqs.,

**26**, No. 2, 200–222 (1977). - 73.
I. T. Kiguradze, “On a singular problem of Cauchy-Nicoletti,” Ann. Mat. Pura ed Appl.,

**104**, 151–175 (1975). - 74.
I. T. Kiguradze, “On the modified problem of Cauchy-Nicoletti,” Ann. Mat. Pura ed Appl.,

**104**, 177–186 (1975). - 75.
H. Kneser, “Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lipschitzschen Bedingung nicht genügt,” Sitzungsberichte der preussischen Akademie der Wissenschaften, Phys.-Math. Klasse, 171–174 (1923).

- 76.
J. Kurzweil, “Generalized ordinary differential equations and continuous dependence on a parameter,” Czechosl. Mat. J.,

**7**, No. 3, 418–449 (1957). - 77.
J. Kurzweil, “Generalized ordinary differential equations,” Czechosl. Mat. J.,

**8**, No. 3, 360–388 (1958). - 78.
A. Lasota, “Sur l'existence et l'unicité des solutions du problème aux limites de Nicoletti pour un système d'équations différentielles ordinaires,” Zesz. Nauk. Univ. Jagiell.,

**11**, 41–48 (1966). - 79.
A. Lasota, “On two-point boundary-value problems for systems of ordinary nonlinear first-order differential equations,” Ann. Pol. Math.

**29**, No. 4, 391–396 (1975). - 80.
A. Lasota and C. Olech, “An optimal solution of Nicoletti's boundary-value problem,” Ann. Pol. Math.,

**18**, No. 2, 131–139 (1966). - 81.
A. Lasota and Z. Opial, “Sur les solutions périodiques des équations différentielles ordinaires,” Ann. Pol. Math.,

**16**, No. 1, 69–94 (1964). - 82.
Z. Opial, “Linear problems for systems of nonlinear differential equations,” J. Diff. Eqs.,

**3**, No. 4, 580–594 (1967). - 83.
K. Schmitt, “Periodic solutions of nonlinear differential systems,” J. Math. Anal. and Appl.,

**40**, No. 1, 174–182 (1972). - 84.
Š. Schwabik and M. Tvrdy, “Boundary-value problems for generalized linear differential equations,” Czechosl. Math. J.,

**29**, No. 3, 451–477 (1979). - 85.
Š. Schwabik, M. Tvrdy, and O. Veivoda, Differential and Integral Equations: Boundary-Value Problems and Adjoints, Academia, Praha (1979).

- 86.
S. Sedziwy, “Periodic solutions of a system of nonlinear differential equations,” Proc. Amer. Math. Soc.,

**48**, No. 2, 328–336 (1975). - 87.
B. L. Shekhter, “On singular boundary-value problems for two-dimensional differential systems,” Arch. Math.,

**19**, No. 1, 19–41 (1983). - 88.
Z. Vorel, “Continuous dependence on parameters,” Nonlinear Anal., Theory, Meth., and Appl.,

**5**, No. 4, 373–380 (1981). - 89.
P. Waltman, “Existence and uniqueness of solutions of boundary-value problems for two-dimensional systems of nonlinear differential equations,” Trans. Amer. Math. Soc.,

**153**, No. 1, 223–234 (1971).

## Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 30, pp. 3–103, 1987.

## Rights and permissions

## About this article

### Cite this article

Kiguradze, I.T. Boundary-value problems for systems of ordinary differential equations.
*J Math Sci* **43, **2259–2339 (1988). https://doi.org/10.1007/BF01100360

Issue Date:

### Keywords

- Boundary Condition
- Differential Equation
- Ordinary Differential Equation
- Approximate Solution
- Differential System