Foundations of Physics

, Volume 5, Issue 1, pp 159–172 | Cite as

A quantum mechanical mind-body interaction



The reduction of a quantum mechanical wave function by the entry of a datum into the consciousness of an observer is used, in a semirealistic neurochemical model, to bring about excitation of a nerve cell in that observer's central nervous system. It is suggested that mind can induce muscular movements by choosing to note data originating from specialized elements of the nervous system. Only the freedom to note or not to note a relevant datum is postulated for the observer's mind; the consequences of either choice are deterministic on the neural scale of events, so that quantum indeterminacy is consistent with physiological determinacy. The proposed mind-body coupling depends on the possibility of the biological evolution of a macroscopic device which has strikingly different neural correlates of its pure and mixed quantum states, respectively. An example of such a device is outlined in terms of components which are familiar from existing nervous systems.


Nervous System Central Nervous System Wave Function Quantum State Nerve Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. S. Sherrington,Man on His Nature (Cambridge Univ. Press, London, 1940).Google Scholar
  2. 2.
    J. v. Neumann,Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, New Jersey, 1955).Google Scholar
  3. 3.
    E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (W. Heinemann, London, 1961).Google Scholar
  4. 4.
    G. Ludwig, inHeisenberg und die Physik unserer Zeit (Vieweg, Braunschweig, 1961).Google Scholar
  5. 5.
    J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).Google Scholar
  6. 6.
    L. Bass,Hermathena 112, 52 (1971).Google Scholar
  7. 7.
    A. S. Eddington,The Philosophy of Physical Science (Cambridge Univ. Press, London, 1939).Google Scholar
  8. 8.
    D. Bohm,Quantum Theory (Prentice Hall, New York, 1951).Google Scholar
  9. 9.
    J. S. Griffith,Mathematical Neurobiology (Academic Press, New York, 1971).Google Scholar
  10. 10.
    E. Schrödinger,Naturwissenschaften 23, 807 (1935).Google Scholar
  11. 11.
    E. P. Wigner,Am. J. Phys. 31, 6 (1963).Google Scholar
  12. 12.
    J. M. Jauch, E. P. Wigner, and M. M. Yanase,Nuovo Cimento 48, 144 (1967).Google Scholar
  13. 13.
    A. L. Hodgkin,The Conduction of the Nervous Impulse (Liverpool Univ. Press, 1964).Google Scholar
  14. 14.
    T. Takenaka and S. Yamagishi,J. Gen. Physiol. 53, 81 (1969).Google Scholar
  15. 15.
    L. Bass and W. J. Moore,Brain Research 33, 451 (1971).Google Scholar
  16. 16.
    H. P. Meloche and J. P. Glusker,Science (U.S.)181, 350 (1973).Google Scholar
  17. 17.
    D. R. Lide,J. Chem. Phys. 27, 343 (1957).Google Scholar
  18. 18.
    E. Merzbacher,Quantum Mechanics (Wiley, New York, 1961).Google Scholar
  19. 19.
    M. L. Wohlbarsht and S. Yeandle,Ann. Rev. Physiol. 29, 513 (1967).Google Scholar
  20. 20.
    L. Bass and W. J. Moore,Biophys. J. 10, 1 (1970).Google Scholar
  21. 21.
    B. Hille,Progr. Biophys. Mol. Biol. 21, 1 (1970).Google Scholar
  22. 22.
    J. C. Eccles,Facing Reality (Springer Verlag, Berlin, 1970).Google Scholar
  23. 23.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  24. 24.
    E. Schrödinger,Mind and Matter (Cambridge Univ. Press, London, 1959).Google Scholar
  25. 25.
    M. Poberai, G. Savay, and B. Csillik,Neurobiology (Copenhagen)2, 1 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • L. Bass
    • 1
  1. 1.Department of MathematicsUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations