Foundations of Physics

, Volume 5, Issue 1, pp 143–158 | Cite as

Quantum action principle in curved space

  • T. Kawai


Schwinger's action principle is formulated for the quantum system which corresponds to the classical system described by the LagrangianLc(\(\dot x\), x)=(M/2)gij(x)\(\dot x\)i\(\dot x\)j−v(x). It is sufficient for the purpose of deriving the laws of quantum mechanics to consider onlyc-number variations of coordinates and time. The Euler-Lagrange equation, the canonical commutation relations, and the canonical equations of motion are derived from this principle in a consistent manner. Further, it is shown that an arbitrary point transformation leaves the forms of the fundamental equations invariant. The judicious choice of the quantal Lagrangian is essential in our formulation. A quantum mechanical analog of Noether's theorem, which relates the invariance of the quantal action with a conservation law, is established. The ambiguities in the quantal Lagrangian are also discussed and it is pointed out that the requirement of invariance is not sufficient to determine uniquely the quantal Lagrangian and the Hamiltonian.


Quantum System Commutation Relation Action Principle Classical System Mechanical Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kawai,Prog. Theoret. Phys. 48, 2082 (1972).Google Scholar
  2. 2.
    T. Kawai,Prog. Theoret. Phys. 49, 1777 (1973).Google Scholar
  3. 3.
    H. Kamo and T. Kawai,Prog. Theoret. Phys. 50, 680 (1973).Google Scholar
  4. 4.
    H. Kamo and T. Kawai,Lett. Nuovo Cimento 7, 571 (1973).Google Scholar
  5. 5.
    B. S. DeWitt,Rev. Mod. Phys. 29, 377 (1957).Google Scholar
  6. 6.
    W. Yourgrau and S. Mandelstam,Variational Principles in Dynamics and Quantum Theory, 3rd ed. (W. B. Saunders, Philadelphia and Pitman, London, 1968).Google Scholar
  7. 7.
    R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948).Google Scholar
  8. 8.
    I. W. Mayes and J. S. Dowker,J. Math. Phys. 14, 434 (1973).Google Scholar
  9. 9.
    K. S. Cheng,J. Math. Phys. 13, 1723 (1972).Google Scholar
  10. 10.
    K. S. Cheng,J. Math. Phys. 14, 980 (1973).Google Scholar
  11. 11.
    L. Cohen,J. Math. Phys. 11, 3296 (1970).Google Scholar
  12. 12.
    F. J. Testa,J. Math. Phys. 12, 1471 (1971).Google Scholar
  13. 13.
    G. S. Um,J. Math. Phys. 15, 220 (1974).Google Scholar
  14. 14.
    J. Schwinger,Phys. Rev. 82, 914 (1951).Google Scholar
  15. 15.
    J. M. Charap,J. Phys. 6, 393 (1973).Google Scholar
  16. 16.
    T. Kimura, T. Ohtani, and R. Sugano,Prog. Theoret. Phys. 48, 1395 (1972).Google Scholar
  17. 17.
    F. J. Bloore, L. Routh, and J. Underhill,Nucl. Phys. B 55, 637 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • T. Kawai
    • 1
  1. 1.Department of PhysicsOsaka City UniversityOsakaJapan

Personalised recommendations