Foundations of Physics

, Volume 5, Issue 1, pp 111–132 | Cite as

Analytical thermodynamics. Part I. Thermostatics—General theory

  • Josef-Maria Jauch


A new axiomatic treatment of equilibrium thermodynamics—thermostatics—is presented. The equilibrium states of a thermal system are assumed to be represented by a differentiable manifold of dimensionn + 1 (n finite). The empirical temperature is defined by the notion of thermal equilibrium. Empirical entropy is shown to exist for all systems with the property that the total work delivered along closed adiabats is zero. Absolute entropy and temperature follow from the additivity of heat and energy for two separate systems in thermal equilibrium considered as a whole. The absolute temperature is defined up to a multiplicative constant. The exterior differentiable calculus of Cartan is introduced and in a subsequent paper its use for the derivation of standard results in thermostatics will be explained.


Entropy Manifold Equilibrium State General Theory Absolute Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Carathéodory,Math. Ann. 67, 355 (1909).Google Scholar
  2. 2.
    C. Carathéodory,Sitzungsber. Preuss. Akad. Wiss. 1925, 39.Google Scholar
  3. 3.
    P. G. Wright,Am. J. Phys. 38, 1363 (1970); cf. also J. C. Maxwell,Theory of Heat (London, 1875), p. 153.Google Scholar
  4. 4.
    T. Ehrenfest-Afanassjewa,Z. Phys. 33, 933;34, 638 (1925);Die Grundlogen der Thermodynamik (E. J. Brill, Leiden, 1956), esp. Ch. IV, p. 41 ff.Google Scholar
  5. 5.
    A. Landé, “Axiomatische Begründung der Thermodynamik durch Carathéodory,”Handbuch der Physik (Springer Verlag, Berlin, 1926), Vol. IX, Ch. 4, p. 281.Google Scholar
  6. 6.
    M. Planck,Thermodynamik, 5th ed. (Veit, Leipzig, 1917).Google Scholar
  7. 7.
    J. M. Jauch,Found. Phys. 2, 327 (1972).Google Scholar
  8. 8.
    E. Cartan, Systèmes différentiables extérieures et leurs applications géométriques,Art. Sci. et Ind. 944, 46 (1945).Google Scholar
  9. 9.
    E. Cartan,Leçons sur la géométrie des espaces de Riemann (Paris, 1946).Google Scholar
  10. 10.
    M. W. Zemansky,Am. J. Phys. 34, 914 (1966).Google Scholar
  11. 11.
    M. Born,Phys. Z. 22, 218, 249, 282 (1921).Google Scholar
  12. 12.
    H. A. Buchdahl,Am. J. Phys. 17, 41, 212 (1949).Google Scholar
  13. 13.
    S. Chandrasekhar,Stellar Structure (Dover, N.Y., 1957), Ch. 1.Google Scholar
  14. 14.
    P. T. Landsberg,Rev. Mod. Phys. 28, 363 (1956).Google Scholar
  15. 15.
    P. T. Landsberg,Thermodynamics (Interscience, N.Y., 1961).Google Scholar
  16. 16.
    P. T. Landsberg,Phys. Stat. Sol. 1, 120 (1961);Nature 201, 485 (1964).Google Scholar
  17. 17.
    F. W. Sears,Am. J. Phys. 31, 747 (1963).Google Scholar
  18. 18.
    L. A. Turner,Am. J. Phys. 28, 781 (1960);29, 40 (1961);30, 506 (1962).Google Scholar
  19. 19.
    R. Giles,Mathematical Foundations of Thermodynamics (Pergamon Press, Oxford, 1964).Google Scholar
  20. 20.
    G. Falk and H. Jung, inHandbuch der Physik, Vol. III/2 (Springer Verlag, Berlin, 1959).Google Scholar
  21. 21.
    P. Fong,Foundations of Thermodynamics (privately printed, 1961).Google Scholar
  22. 22.
    L. Tisza,Generalized Thermodynamics (M.I.T. Press, Cambridge, Massachusetts, 1966).Google Scholar
  23. 23.
    G. Falk,Theoretische Physik auf der Grundlage einer Allgemeinen Dynamik, Band II:Allgemeine Dynamik, Thermodynamik (Springer, Berlin, 1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Josef-Maria Jauch
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenevaSwitzerland

Personalised recommendations