Advertisement

Journal of Global Optimization

, Volume 3, Issue 1, pp 67–78 | Cite as

On the global optimization properties of finite-difference local descent algorithms

  • S. K. Zavriev
Article

Abstract

The paper is devoted to the convergence properties of finite-difference local descent algorithms in global optimization problems with a special γ-convex structure. It is assumed that the objective function can be closely approximated by some smooth convex function. Stability properties of the perturbed gradient descent and coordinate descent methods are investigated. Basing on this results some global optimization properties of finite-difference local descent algorithms, in particular, coordinate descent method, are discovered. These properties are not inherent in methods using exact gradients.

Key words

Gradient method coordinate descent method global optimization stability under perturbations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hu, T. C., V. Klee and D. Larman (1989), Optimization of Globally Convex Functions,SIAM J. Control and Optimization 27 (5), 1026–1047.Google Scholar
  2. 2.
    Mayne, D. Q. and E. Polak (1984), Nondifferential Optimization via Adaptive Smoothing,JOTA 43 (4), 601–614.Google Scholar
  3. 3.
    Mikhalevitch, V. S., A. M. Gupal and V. I. Norkin (1987),Methods of Nonconvex Optimization, Nauka, Moscow (in Russian).Google Scholar
  4. 4.
    Boggs, P. T. and J. E. Dennis, Jr. (1976), A Stability Analysis for Perturbed Nonlinear Iterative Methods,Mathematics of Computation 30 (134), 199–215.Google Scholar
  5. 5.
    Polyak, B. T. (1987),Introduction to Optimization. Optimization Softwear, Inc., NY.Google Scholar
  6. 6.
    Zavriev, S. K. (1984),Stochastic Sub-Gradients Methods for Minmax Problems. Izd. MGU, Moscow, (1984) (in Russian).Google Scholar
  7. 7.
    Dorofeev, P. A. (1985), On Some Properties of Quasigradient Method,USSR Computational Mathematics and Mathematical Physics 25, 181–189.Google Scholar
  8. 8.
    Zavriev, S. K. (1990), Convergence Properties of the Gradient Method in Presence of Perturbations of a Variable Level,USSR Computational Mathematics and Mathematical Physics 30, 997–1007.Google Scholar
  9. 9.
    Norkin, V. I. (1979), On the Convergence Conditions for Combined Nonlinear Programming Algorithms,Kibernetica 6, 73–77.Google Scholar
  10. 10.
    Luenberger, D. G. (1984),Linear and Nonlinear Programming, Addison-Wesley, London.Google Scholar
  11. 11.
    Evtushenko, U. G. (1971), Numerical Method for the Search of Global Extremum of Function,USSR Computational Mathematics and Mathematical Physics 11, 1390–1403.Google Scholar
  12. 12.
    Horst, R. (1986), A General Class of Branch-and-Bound Methods in Global Optimization with Some New Approaches for Concave Minimization,Journal of Optimization Theory and Applications 51, 271–291.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • S. K. Zavriev
    • 1
  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations