Journal of Soviet Mathematics

, Volume 57, Issue 6, pp 3453–3458 | Cite as

Bruhat decomposition for long root tori in Chevalley groups

  • N. A. Vavilov
  • A. A. Semenov

Abstract

It is proved that all elements of a given long root torus (i.e., a one-parameter subgroup of long root semisimple elements) in a Chevalley group over a field, except for at most three, belong to the same Bruhat decomposition class.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. Bourbaki, Groups and Lie Algebras [Russian translation], Mir, Moscow, Chaps. 4–6 (1972); Chaps. 7, 8 (1978).Google Scholar
  2. 2.
    N. A. Vavilov, “The Bruhat decomposition for one-dimensional transformations,” Vestn. Leningr. Univ, Ser. 1, No. 3, 14–20 (1986).Google Scholar
  3. 3.
    N. A. Vavilov, “Weight elements of Chevalley groups,” Dokl. Akad. Nauk SSSR,298, No. 3, 524–527 (1986).Google Scholar
  4. 4.
    N. A. Vavilov, “The geometry of long root subgroups in Chevalley groups,” Vestn. Leningr. Univ., Ser. 1, No. 1, 8–11 (1988).Google Scholar
  5. 5.
    N. A. Vavilov, “The conjugacy theorem for subgroups of solvable Chevalley groups that contain maximal split tori,” Dokl. Akad. Nauk SSSR,299, No. 2, 269–272 (1988).Google Scholar
  6. 6.
    N. A. Vavilov, “The Bruhat decomposition for long root semisimple elements in Chevalley groups,” in: Rings and Modules. Limit Theorems of Probability Theory [in Russian], No. 2, Leningr. State Univ., Leningrad (1988), pp. 18–39.Google Scholar
  7. 7.
    N. A. Vavilov, “The Bruhat decomposition for two-dimensional transformations,” Vestn. Leningr. Univ., Ser. 1, No. 3, 5–10 (1989).Google Scholar
  8. 8.
    E. B. Plotkin, “Net subgroups of Chevalley groups and stabilization problems,” Candidate's Dissertation, Leningrad (1985).Google Scholar
  9. 9.
    A. A. Semenov, “On the Bruhat decomposition of roots of semisimple subgroups,” in: Abstracts of the 19th All-Union Conference on Algebra, Part 1 [in Russian], L'vov (1987).Google Scholar
  10. 10.
    A. A. Semenov, “The Bruhat decomposition of the roots of semisimple root subgroups of the special linear group,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad Nauk SSSR,160, 239–246 (1987).Google Scholar
  11. 11.
    R. Steinberg, Lectures on Chevalley Groups, Yale Univ., New Haven (1972).Google Scholar
  12. 12.
    R. W. Carter, Simple Groups of Lie Type, Wiley, London (1972).Google Scholar
  13. 13.
    H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. Ecole Norm. Supér., Ser. 4,2, 1–62 (1969).Google Scholar
  14. 14.
    G. M. Seitz, “Properties of the known simple groups,” in: Proc. Symp. Pure Math.,37 (1980), pp. 231–237.Google Scholar
  15. 15.
    M. R. Stein, “Stability theorems for K1, K2, and related functors modelled on Chevalley groups,” Jpn. J. Math.,4, No. 1, 77–108 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • N. A. Vavilov
  • A. A. Semenov

There are no affiliations available

Personalised recommendations