Journal of Atmospheric Chemistry

, Volume 20, Issue 1, pp 89–116 | Cite as

Modelling of the nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud

  • Rolf Sander
  • Jos Lelieveld
  • Paul J. Crutzen


A chemistry module has been incorporated into a Lagrangian type model that computes the dynamics and microphysics of an orographical cloud formed in moist air flowing over the summit of Great Dun Fell (GDF) in England. The cloud droplets grow on a maritime aerosol which is assumed to be an external mixture of sea-salt particles and ammonium-sulfate particles. The dry particle radii are in the range 10 nm<r<1 µm. The gas-phase chemical reaction scheme considers reactions of nitrogen compounds that are important at night. The treatment of scavenging of gases into the aqueous phase in the model takes into account the different solubilities and accommodation coefficients. The chemistry in the aqueous phase focusses on the oxidation of S(IV) via different pathways.

Sensitivity analyses have been performed to investigate deviations from gas-liquid equilibria according to Henry's law and also to study the influence of iron and of nitrogen compounds on the aqueous-phase oxidation of dissolved SO2. When addressing these questions, special attention has been given to the dependence on the droplet size distribution and on the chemical composition of the cloud condensation nuclei on which the droplets have formed. It was found that the oxidation of S(IV) via a chain reaction of sulfur radicals can be important under conditions where H2O2 is low. However, major uncertainties remain with respect to the interaction of iron with the radical chain. It was shown that mixing of individual cloud droplets, which are not in equilibrium according to Henry's law, can result in a bulk sample in equilibrium with the ambient air. The dependence of the aqueous-phase concentrations on the size of the cloud droplets is discussed for iron, chloride and NO3.

Key words

model orographic cloud sulfur nitrogen oxides heterogeneous oxidation iron catalysis Henry's law droplet size spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., van Grieken, R., and Maenhaut, W., 1986, Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols,Science 232, 1620–1623.Google Scholar
  2. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., and Troe, J., 1989, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III,J. Phys. Chem. Ref. Data 18, 881–1097.Google Scholar
  3. Ayers, G. P., and Larson, T. V., 1990, Numerical study of droplet size dependent chemistry in oceanic, wintertime stratus cloud at sothern mid-latitudes,J. Atmos. Chem. 11, 143–167.Google Scholar
  4. Baker, M. B., Blyth, A. M., Carruthers, D. J., Caughey, S. J., Choularton, T. W., Conway, B. J., Fullarton, G., Gay, M. J., Latham, J., Mill, C. S., Smith, M. H., and Stromberg, I. M., 1982, Field studies of the effect of entrainment upon the structure of clouds at Great Dun Fell,Q. J. R. Meteorol. Soc. 108, 899–916.Google Scholar
  5. Betterton, E. A., and Hoffmann, M. R., 1988, Oxidation of aqueous SO2 by peroxymonosulfate,J. Phys. Chem. 92, 5962–5965.Google Scholar
  6. Bower, K. N., and Choularton, T. W., 1988, The effects of entrainment on the growth of droplets in continental cumulus clouds,Q. J. R. Meteorol. Soc. 114, 1411–1434.Google Scholar
  7. Bower, K. N., Hill, T. A., Coe, H., and Choularton, T. W., 1991, SO2 oxidation in an entraining cloud model with explicit microphysics,Atmos. Environ. 25A, 2401–2418.Google Scholar
  8. Brandt, C., and van Eldik, R., 1993, Iron(III)-catalyzed oxidation of sulfur(IV)-oxides: Evidence for a novel reaction step in the presence of oxygen in P. M. Borrell, P. Borrell, T. Cvitaš, and W. Seiler, (eds),Proceedings of EUROTRAC symposium '92, SPB Academic Publishing bv, The Hague, pp. 593–597Google Scholar
  9. Buxton, G. V., Eccles, J. L., and Salmon, G. A., 1993, The NO3 radical in aqueous solution in P. M. Borrell, P. Borrell, T. Cvitaš, and W. Seiler, (eds),Proceedings of EUROTRAC symposium '92, SPB Academic Publishing bv, The Hague, pp. 610–614.Google Scholar
  10. Carruthers, D. J., and Choularton, T. W., 1982., Airflow over hills of moderate slope,Q. J. R. Meteorol. Soc. 108, 603–624.Google Scholar
  11. Chameides, W. L., 1984, The photochemistry of a remote marine stratiform cloud,J. Geophys. Res. 89D, 4739–4755.Google Scholar
  12. Chameides, W. L., 1986, Reply,J. Geophys. Res. 91D, 14571–14572.Google Scholar
  13. Chaumerliac, N., Richard, E., and Rosset, R., 1990, Mesoscale modeling of acidity production in orographic clouds and rain,Atmos. Environ. 24A, 1573–1584.Google Scholar
  14. Colvile, R. N., Sander, R., Choularton, T. W., Bower, K. N., Inglis, D. W. F., Wobrock, W., Maser, R., Schell, D., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Hallberg, A., Ogren, J. A., Noone, K. J., Faccini, M. C., Fuzzi, S., Orsi, G., Arends, B. G., Winiwarter, W., Schneider, T., and Berner, A., 1994, Computer modelling of clouds at Kleiner Feldberg,J. Atmos. Chem. 19, 189–229.Google Scholar
  15. Conklin, M. H., and Hoffmann, M. R., 1988, Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes,Environ. Sci. Technol. 22, 899–907.Google Scholar
  16. Damschen, D. E., and Martin, L. R., 1983, Aqueous aerosol oxidation of nitrous acid by O2, O3 and H2O2,Atmos. Environ. 17, 2005–2011.Google Scholar
  17. Deister, U., and Warneck, P., 1990, Photooxidation of SO32− in aqueous solution,J. Phys. Chem. 94, 2191–2198.Google Scholar
  18. DeMore, W. B., Sander, S. B., Golden, D. M., Molina, M. J., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1990, Chemical kinetics and photochemical data for use in stratospheric modeling, Jet Propulsion Laboratory Publication 90-1.Google Scholar
  19. Dlugi, R., Forkel, R., and Seidl, W., 1990 (June),Chemische Reaktionen in kondensierender Atmosphäre, Abschlußbericht Forschungsvorhaben 325-4007-0744203 3 des BMFT. Meteorologisches Institut der Universität München.Google Scholar
  20. Exner, M., Herrmann, H., and Zellner, R., 1992, Laser-based studies of reactions of the nitrate radical in aqueous solution,Ber. Bunsenges. Phys. Chem. 96, 470–477.Google Scholar
  21. Flossmann, A. I., 1991, The scavenging of two different types of marine aerosol particles calculated using a two-dimensional detailed cloud model,Tellus 43B 301–321.Google Scholar
  22. George, Ch., Ponche, J. L., and Mirabel, Ph., 1993, Experimental determination of the mass accommodation coefficient for NH3 in P. M. Borrell, P. Borrell, T. Cvitaš, and W. Seiler, (eds),Proceedings of EUROTRAC symposium '92, SPB Academic Publishing bv, The Hague, pp. 644–647.Google Scholar
  23. Graedel, T. E., and Goldberg, K. I., 1983, Kinetic studies of raindrop chemistry 1. Inorganic and organic processes,J. Geophys. Res. 88C, 10865–10882.Google Scholar
  24. Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986, Kinetic model studies of atmospheric droplet chemistry 2. Homogeneous transition metal chemistry in raindrops,J. Geophys. Res. 91D, 5205–5221.Google Scholar
  25. Hayon, E., Treinin, A., and Wilf, J., 1972, Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2, SO2, SO3, SO4, and SO5 radicals,J. Am. Chem. Soc. 94, 47–57.Google Scholar
  26. Hill, T. A., Choularton, T. W., and Penkett, S. A., 1986, A model of sulphate production in a cap cloud and subsequent turbulent deposition onto the hill surface,Atmos. Environ. 20, 1763–1771.Google Scholar
  27. Hoffmann, M. R., and Jacob, D. J., 1984, Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry, in Calvert, J. G. (ed), SO2, NOand NO2 Oxidation Oechanisms: Atmospheric Considerations, Butterworth Publishers, Boston, MA., pp. 101–172.Google Scholar
  28. Huie, R. E., and Neta, P., 1984, Chemical behavior of SO3 and SO5 radicals in aqueous solutions,J. Phys. Chem. 88, 5665–5669.Google Scholar
  29. Huie, R. E., and Neta, P., 1987, Rate constants for some oxidations of S(IV) by radicals in aqueous solutions,Atmos. Environ. 21, 1743–1747.Google Scholar
  30. Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate,J. Geophys. Res. 91D, 9807–9826.Google Scholar
  31. Jaenicke, R., 1987, Aerosol physics and chemistry, inLandolt-Börnstein New Series V/4b, Springer Verlag, Berlin.Google Scholar
  32. Jayne, J. T., Duan, S. X., Davidovitis, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of gas-phase alcohol and organic acid molecules by water surfaces,J. Phys. Chem. 95, 6329–6336.Google Scholar
  33. Jayson, G. G., Parsons, B. J., and Swallow, A. J., 1973, Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution,J. Chem. Soc. Faraday Trans. 69, 1597–1607.Google Scholar
  34. Lee, Y. J., and Rochelle, G. T., 1987, Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: Products, kinetics, and mechanism,Environ. Sci. Technol. 21, 266–272.Google Scholar
  35. Lelieveld, J., and Crutzen, P. J., 1991, The role of clouds in tropospheric photochemistry,J. Atmos. Chem. 12, 229–267.Google Scholar
  36. Maahs, H. G., 1983., Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in nonurban tropospheric clouds,J. Geophys. Res. 88C, 10721–10733.Google Scholar
  37. Martin, L. R., 1984, Kinetic studies of sulfite oxidation in aqueous solution in J. G. Calvert, (ed), SO2, NOand NO2 Oxidation Mechanisms: Atmospheric Considerations, Butterworth Publishers, Boston, MA., pp. 63–100.Google Scholar
  38. Martin, L. R., and Damschen, D. E., 1981, Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH,Atmos. Environ. 15, 1615–1621.Google Scholar
  39. Martin, L. R., Damschen, D. E., and Judeikis, H. S., 1981, The reactions of nitrogen oxides with SO2 in aqueous aerosols,Atmos. Environ. 15, 191–195.Google Scholar
  40. McElroy, W. J., 1990, A laser study of the reaction of SO4 with Cl and the subsequent decay of Cl2 in aqueous solution,J. Phys. Chem. 94, 2435–2441.Google Scholar
  41. Möller, D., and Mauersberger, G., 1992, Cloud chemistry effects on tropospheric photooxidants in polluted atmosphere — model results,J. Atmos. Chem. 14, 153–165.Google Scholar
  42. Ogren, J. A., and Charlson, R. J., 1992, Implications for models and measurements of chemical inhomogeneities among cloud droplets,Tellus 44B, 208–225.Google Scholar
  43. Pandis, S. N., and Seinfeld, J. H., 1989, Sensitivity analysis of a chemical mechanism for aqueousphase atmospheric chemistry,J. Geophys. Res. 94D, 1105–1126.Google Scholar
  44. Pandis, S. N., and Seinfeld, J. H., 1991, Should bulk cloudwater samples obey Henry's law?J. Geophys. Res. 96D, 10791–10798.Google Scholar
  45. Penkett, S. A., Jones, B. M. R., Brice, K. A., and Eggleton, A. E. J., 1979, The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater,Atmos. Environ. 13, 123–137.Google Scholar
  46. Perdue, E. M., and Beck, K. C., 1988, Chemical consequences of mixing atmospheric droplets of varied pH,J. Geophys. Res. 93D, 691–698.Google Scholar
  47. Ponche, J. L., George, Ch., and Mirabel, Ph., 1993, Mass transfer at the air/water interface: Mass accommodation coefficients of SO2, HNO3, NO2 and NH3,J. Atmos. Chem. 16, 1–21.Google Scholar
  48. Pruppacher, H. R., and Klett, J. D., 1978,Microphysics of Cloud and Precipitation, D. Reidel, Dordrecht.Google Scholar
  49. Reddy, K. B., and van Eldik, R., 1992, Kinetics and mechanism of the sulfite-induced autoxidation of Fe(II) in acidic aqueous solution,Atmos. Environ. 26A, 661–665.Google Scholar
  50. Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds in W. Jaeschke, (ed),Chemistry of Multiphase Atmospheric Systems, Springer Verlag, Berlin, pp. 415–471.Google Scholar
  51. Seidl, W., 1988, Ionic concentrations and initial S(IV)-oxidation rates in droplets during the condensational stage of cloud,Tellus 41B, 32–50.Google Scholar
  52. Van Doren, J. M., Watson, L. R., Davidovitis, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990, Temperature dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets,J. Phys. Chem. 94, 3265–3269.Google Scholar
  53. Warneck, P., 1988,Chemistry of the Natural Atmosphere, Academic Press, Inc., San Diego.Google Scholar
  54. Warneck, P., 1991, Chemical reactions in clouds,Fresenius J. Anal. Chem. 340, 585–590.Google Scholar
  55. Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D., 1989, Kinetics of aqueous phase reactions of the SO4 radical with potential importance in cloud chemistry,J. Geophys. Res. 94D, 1085–1094.Google Scholar
  56. Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K.-H., and Jaeschke, W., 1988, Organic acid gas and liquid-phase measurements in Po valley fall-winter conditions in the presence of fog,Tellus 40B, 348–357.Google Scholar
  57. Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L. R., Van Doren, J. M., Jayne, J. T., and Davidovitis, P., 1989, The temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces,J. Phys. Chem. 93, 1159–1172.Google Scholar
  58. Zhuang, G., Yi, Z., Duce, R. A., and Brown, P. R., 1992, Chemistry of iron in marine aerosols,Global Biogeochem. Cycles 6, 161–173.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Rolf Sander
    • 1
  • Jos Lelieveld
    • 1
  • Paul J. Crutzen
    • 1
  1. 1.Max-Planck Institute for ChemistryAirchemistry DivisionMainzGermany

Personalised recommendations