Journal of Global Optimization

, Volume 7, Issue 4, pp 337–363 | Cite as

αBB: A global optimization method for general constrained nonconvex problems

  • I. P. Androulakis
  • C. D. Maranas
  • C. A. Floudas


A branch and bound global optimization method,αBB, for general continuous optimization problems involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem is obtained by (i) replacing all nonconvex terms of special structure (i.e. bilinear, fractional, signomial) with customized tight convex lower bounding functions and (ii) by utilizing the α parameter as defined in [17] to underestimate nonconvex terms of generic structure. The proposed branch and bound type algorithm attains finiteε-convergence to the global minimum through the successive subdivision of the original region and the subsequent solution of a series of nonlinear convex minimization problems. The global optimization method,αBB, is implemented in C and tested on a variety of example problems.


Global optimization constrained optimization convex relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.A. Al-Khayyal. Jointly Constrained Bilinear Programs and Related Problems.Int. J. Comp. Math., 19(11):53, 1990.Google Scholar
  2. 2.
    F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming.Math. Opers. Res., 8:523, 1983.Google Scholar
  3. 3.
    I.P. Androulakis and V. Venkatasubramanian. A Genetic Algorithmic Framework for Process Design and Optimization.Comp. chem. engng., 15(4):217, 1991.Google Scholar
  4. 4.
    A. Ben-Tal, G. Eiger, and V. Gershovitz. Global Optimization by Reducing the Duality press, Math. Prog., 1994.Google Scholar
  5. 5.
    C.A. Floudas and P.M. Pardalos.Recent advances in global optimization Princeton Series in Computer Science. Princeton University Press, Princeton, New Jersey, 1992.Google Scholar
  6. 6.
    C.A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. Theory.Comput. chem. Engng., 14(12):1397, 1990.Google Scholar
  7. 7.
    C.A. Floudas and V. Visweswaran. A primal-relaxed dual global optimization approach.J. Opt. Th. Appl., 78(2):187, 1993.Google Scholar
  8. 8.
    E.R. Hansen.Global Optimization Using Interval Analysis. Marcel Dekkar, New York, NY, 1992.Google Scholar
  9. 9.
    C.A. Haverly. Studies of the Behavior of Recursion for the Pooling Problem.SIGMAP Bulletin, 25:19, 1978.Google Scholar
  10. 10.
    D.E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York, NY, 1989.Google Scholar
  11. 11.
    R. Horst and P.M. Pardalos.Handbook of Global Optimization: Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1994.Google Scholar
  12. 12.
    P. Hansen, B. Jaumard, and S. Lu. Global Optimization of Univariate Lipschitz Functions: I. Survey and Properties.Math. Prog., 55:251, 1992a.Google Scholar
  13. 13.
    P. Hansen, B. Jaumard, and S. Lu. Global Optimization of Univariate Lipschitz Functions: II. New Algorithms and Computational Comparison.Math. Prog., 55:273, 1992b.Google Scholar
  14. 14.
    R. Horst, N.V. Thoai, and J. De Vries. A New Simplicial Cover Technique in Constrained Global Optimization.J. Global Opt., 2:1, 1992.Google Scholar
  15. 15.
    R. Horst and H. Tuy. On the Convergence of Global Methods in Multiextremal Optimization.Opt. Th. Appl., 54:283, 1987.Google Scholar
  16. 16.
    R. Horst and H. Tuy.Global Optimization. Springer-Verlag, Berlin, Germany, 1990.Google Scholar
  17. 17.
    C.D. Maranas and C.A. Floudas. Global Minimum Potential Energy Conformations of Small Molecules.J. Glob. Opt., 4:135, 1994a.Google Scholar
  18. 18.
    C.D. Maranas and C.A. Floudas. Global Optimization in Generalized Geometric Porgramming.submitted to Comp. chem. Engnr., 1994c.Google Scholar
  19. 19.
    C.D. Maranas and C.A. Floudas. Finding All Solutions of Nonlinearly Constrained Systems of Equations.submitted to J. Global Opt., 1995a.Google Scholar
  20. 20.
    C.M. McDonald and C.A. Floudas. Decomposition Based and Branch and Bound Global Optimization Approaches for the Phase Equilibrium Problem.J. Global Opt., 5:205, 1994.Google Scholar
  21. 21.
    R. Moore, E. Hansen and A. Leclerc. Rigorous Methods for Global Optimization. InRecent advances in global optimization Princeton Series in Computer Science. Princeton University Press, Princeton, New Jersey, 1992.Google Scholar
  22. 22.
    B.A. Murtagh and M.A. Saunders.MINOS5.0 Users Guide. Systems Optimization Laboratory, Dept. of Operations Research, Stanford University, CA., 1983. Appendix A: MINOS5.0, Technical Report SOL 83-20.Google Scholar
  23. 23.
    P.M. Pardalos and J.B. Rosen.Constrained global optimization: Algorithms and applications, volume 268of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany, 1987.Google Scholar
  24. 24.
    H. Ratschek and J. Rokne.New Computer Methods for Global Optimization. Halsted Press, Chichester, Great Britain, 1988.Google Scholar
  25. 25.
    A.H.G. Rinnoy-Kan and G.T. Timmer. Stochastic Global Optimization Methods. Part I: Clustering Methods.Math. Prog., 39:27, 1987.Google Scholar
  26. 26.
    C.D. Gelatt, S. Kirkpatrick and M.P. Vecchi.Science, 220:671, 1983.Google Scholar
  27. 27.
    H.D. Sherali and A. Alameddine. A New Reformulation Linearization Technique for Bilinear Programming Problems.J. Global Opt., 2(4):379, 1992.Google Scholar
  28. 28.
    H.D. Sherali and C.H. Tuncbilek. A Global Optimization Algorithm for Polynomial Programming Using a Reformulation-Linearization Technique.J. Global Opt., 2:101, 1992.Google Scholar
  29. 29.
    N.Z. Shor. Dual Quadratic Estimates in Polynomial and Boolean Programming.Annals of Operations Research, 25:163, 1990.Google Scholar
  30. 30.
    A. Torn and A. Zilinskas.Global Optimization, volume 350 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1989.Google Scholar
  31. 31.
    H. Tuy. Global Minimum of the Difference of Two Convex Functions.Mathematical Programming Study, 30:150, 1987.Google Scholar
  32. 32.
    H. Tuy, T.V. Thieu, and N.Q. Thai. A Conical Algorithm for Globally Minimizing A Concave Function over a Closed Convex Set.Mathematics of Operations Research, 10:498, 1985.Google Scholar
  33. 33.
    V. Visweswaran and C.A. Floudas. New properties and computational improvement of the GOP algorithm for problems with quadratic objective function and constraints.J. Global Opt., 3(3):439, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • I. P. Androulakis
    • 1
  • C. D. Maranas
    • 1
  • C. A. Floudas
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrinceton

Personalised recommendations