Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Smirnov domains

Abstract

This is an expository article which briefly surveys some of V. I. Smirnov's early contributions to the theory of Hp spaces, with emphasis on Smirnov domains and related developments.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. V. Ahlfors and G. Weill, “A uniqueness theorem for Beltrami equations,” Proc. Amer. Math. Soc.,13, 975–978 (1962).

  2. 2.

    A. Beurling, “On two problems concerning linear transformations in Hilbert space,” Acta Math.,81, No. 3–4, 239–255 (1949).

  3. 3.

    P. L. Duren, “Smoothness of functions generated by Riesz products,” Proc. Amer. Math. Soc.,16, 1263–1268 (1965).

  4. 4.

    P. L. Duren, Theory of Hp Spaces, Academic Press, New York (1970).

  5. 5.

    P. L. Duren, “Smirnov domains and conjugate functions,” J. Approx. Theory,5, 393–400 (1972).

  6. 6.

    P. L. Duren, H. S. Shapiro, and A. L. Shields, “Singular measures and domains not of Smirnov type,” Duke Math. J.,33, No. 2, 247–254 (1966).

  7. 7.

    D. S. Jerison and C. E. Kenig, “Hardy spaces, H and singular integrals on chord-arc domains,” Math. Scand.,50, No. 2, 221–247 (1982).

  8. 8.

    P. Jones and M. Zinsmeister, “Sur la transformation conforme des domaines de Lavrentiev,” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 10, 563–566 (1982).

  9. 9.

    J.-P. Kahane, “Trois notes sur les ensembles parfaits linéaires,” Enseign. Math.,15, 185–192 (1969).

  10. 10.

    M. V. Keldysh, “On a class of extremal polynomials,” Dokl. Akad. Nauk SSSR,4, No. 4, 163–166 (1936).

  11. 11.

    M. V. Keldysh and M. A. Lavrentiev, “Sur la représentation conforme des domaines limités par des courbes rectifiables,” Ann. Sci. École Norm. Sup.,54, 1–38 (1937).

  12. 12.

    M. A. Lavrentiev, “On some boundary value problems in the theory of univalent functions,” Mat. Sb.,1 (43), 815–844 (1936). Amer. Math. Soc. Transl, vol. 32, 1–35 (1963).

  13. 13.

    G. Piranian, “Two monotonic, singular, uniformly almost smooth functions,” Duke Math. J.,33, 255–262 (1966).

  14. 14.

    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], GITTL, Moscow-Leningrad (1950); German translation: Randeigenschaften Analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin (1956).

  15. 15.

    P. L. Shabalin, “Univalence classes and V. I. Smirnov's domains,” Trudy Sem. Kraev. Zadacham, Kazan. Univ., No. 16, 218–226 (1979).

  16. 16.

    H. S. Shapiro, “Remarks concerning domains of Smirnov type,” Michigan Math. J.,13, 341–348 (1966).

  17. 17.

    H. S. Shapiro, “Monotonic singular functions of high smoothness,” Michigan Math. J.,15, 265–275 (1968).

  18. 18.

    V. I. Smirnov, “Sur la théorie des polynômes orthogonaux à une variable complexe,” Journal de la Société Phys.-Math. de Léningrade,2, No. 2, 155–179 (1928).

  19. 19.

    V. I. Smirnov, “Sur les valeurs limites des fonctions, régulières à l'intérieur d'un cercle,” Journal de la Société Phys.-Math. de Léningrade,2, No. 2, 22–37 (1929).

  20. 20.

    V. I. Smirnov, “Sur les formules de Cauchy et de Green et quelques problèmes qui s'y rattachent,” Izv. Akad. Nauk SSSR, Ser. Mat., 337–372 (1932).

  21. 21.

    G. C. Tumarkin, “On a sufficient condition for a domain to belong to class S,” Vestnik Leningrad. Univ. Mat., No. 13, Vyp. 3, 47–55 (1962).

  22. 22.

    M. Zinsmeister, “Courbes de Jordan vérifiant une condition corde-arc,” Ann. Inst. Fourier (Grenoble),32, No. 2, 13–21 (1982).

Download references

Additional information

Published in Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, Vol. 170, pp. 95–101, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duren, P.L. Smirnov domains. J Math Sci 63, 167–170 (1993). https://doi.org/10.1007/BF01099309

Download citation

Keywords

  • Related Development
  • Early Contribution
  • Expository Article
  • Smirnov Domain