Journal of Soviet Mathematics

, Volume 63, Issue 2, pp 115–129 | Cite as

Inner functions and related spaces of pseudocontinuable functions

  • A. B. Aleksandrov
Article

Abstract

Let θ be an inner function, let α ∈ C, ¦α¦=1. Then the harmonic function ℜ[(α+θ)]/(α−θ)] is the Poisson integral of a singular measureσ α D. N. Clark's known theorem enables us to identify in a natural manner the space H2 ⊖ θH2 with the space L2 α ).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. N. Clark, “One dimensional perturbations of restricted shifts,” J. Anal. Math.,25, 169–191 (1972).Google Scholar
  2. 2.
    N. K. Nikol'skii, Treatise on the Shift Operator. Spectral Function Theory, Springer, Berlin (1986).Google Scholar
  3. 3.
    A. B. Aleksandrov, “Invariant subspaces of shift operators. An axiomatic approach,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,113, 7–26 (1981).Google Scholar
  4. 4.
    A. B. Aleksandrov, “Invariant subspaces of the backward shift operator in the space Hp (p ∈ (0, 1)),” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,92, 7–29 (1979).Google Scholar
  5. 5.
    A. B. Aleksandrov, “The multiplicity of the boundary values of inner functions,” Izv. Akad. Nauk ArmSSR, Mat.,22, No. 5, 490–503 (1987).Google Scholar
  6. 6.
    A. L. Volberg, “Thin and thick families of rational fractions,” in: Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., No. 864, Springer, Berlin (1981), pp. 440–480.Google Scholar
  7. 7.
    B. Erikke (B. Jöricke) and V. P. Khavin, “Traces of harmonic functions and comparison of Lp-norms of analytic functions,” Math. Nachr.,123, 225–254 (1985).Google Scholar
  8. 8.
    P. Koosis, “Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques,” C. R. Acad. Sci. Paris, Ser. A-B,291, No. 4, A255-A257 (1980).Google Scholar
  9. 9.
    S. V. Hruscev and S. A. Vinogradov, “Free interpolation in the space of uniformly convergent Taylor series,” in: Complex Analysis and Spectral Theory, Seminar, Leningrad (1979/80), Lecture Notes in Math., No. 864, 171–213 (1981).Google Scholar
  10. 10.
    M. G. Goluzina, “On the multiplication and division of Cauchy-Stieltjes type integrals,” Vestnik Leningrad. Univ. Mat. Mekh. Astronom., No. 19, vyp. 4, 8–15 (1981).Google Scholar
  11. 11.
    S. V. Kislyakov, “Classical problems of Fourier analysis,” Itogi Nauki i Tekhniki, Fundam. Napravl.,15, 135–195 (1987).Google Scholar
  12. 12.
    J. B. Garnett, Bounded Analytic Functions, Academic Press, New York (1981).Google Scholar
  13. 13.
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math., No. 338, Springer, Berlin (1973).Google Scholar
  14. 14.
    A. Pietsch, Operator Ideals, North-Holland, Amsterdam (1980).Google Scholar
  15. 15.
    P. R. Ahern and D. N. Clark, “On inner functions with Hp-derivative,” Michigan Math. J.,21, No. 2, 115–128 (1974).Google Scholar
  16. 16.
    E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, London (1966).Google Scholar
  17. 17.
    A. L. Vol'berg and S. R. Treil', “Imbedding theorems for the invariant subspaces of the backward shift operator,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,149, 38–51 (1986).Google Scholar
  18. 18.
    B. Cohn, “Carleson measures for functions orthogonal to invariant subspaces,” Pacific J. Math.,103, No. 2, 347–364 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. B. Aleksandrov

There are no affiliations available

Personalised recommendations