Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The crystal structure of Ca7Mg9(Ca,Mg)2(PO4)12

Die Kristallstruktur von Ca7Mg9(Ca,Mg)2(PO4)12

  • 92 Accesses

  • 25 Citations

Summary

The unit cell of Ca7Mg9(Ca,Mg)2(PO4)12 isa=22.841(3) Å,b=9.994(1) Å,c=17.088(5) Å and β=99.63(3)° at 24° C. The space-group is C2/c with four formula weights per cell. The crystal structure has been determined from 6330 X-ray reflections measured from a single crystal by a counter method and has been refined toR w =0.044,R=0.046 (based on 4227 observed reflections and 322 of the unobserved reflections). One cation site may be occupied by Ca or Mg and gives rise to variability in composition as is reflected in the formula give above. In the sample studied, Ca and Mg occupy the site approximately equally. The\(\left[ {10\bar 2} \right]\) direction in the unit cell is pseudo-hexagonal. The structure of Ca7Mg9(Ca,Mg)2(PO4)12 is related to that of K3Na(SO4)2 in that along\(\left[ {10\bar 2} \right]\) it has columns of cations and columns of cations and anions. These columns are arranged in a K3Na(SO4)2-type pseudo-cell. In the cation-anion columns, every other cation site in K3Na(SO4)2 is vacant in Ca7Mg9(Ca,Mg)2(PO4)12.

Zusammenfassung

Die Gitterkonstanten von Ca7Mg9(Ca,Mg)2(PO4)12 sind (bei 24° C)a=22,841(3) Å,b=9,994(1) Å,c=17,088(5) Å und β=99,63(3)°; Raumgruppe: C2/c;Z=4. Die Kristallstruktur wurde aus 6330 Röntgendiffraktometer-Einkristalldaten bestimmt und (auf der Basis von 4227 beobachteten und 322 nicht-beobachteten Reflexen) aufR w =0,044 undR=0,046 verfeinert. Eine Kationenlage kann von Ca oder Mg besetzt werden, was eine Variabilität der Zusammensetzung ergibt, wie sie obige Formel ausdrückt. In der untersuchten Probe besetzen Ca und Mg diese Punktlage etwa zu gleichen Teilen. Die\(\left[ {10\bar 2} \right]\)-Richtung der Elementarzelle ist pseudo-hexagonal. Die Struktur von Ca7Mg9(Ca,Mg)2(PO4)12 ist zu der von K3Na(SO4)2 darin verwandt, daß sie längs\(\left[ {10\bar 2} \right]\) Säulen von Kationen und Säulen von Anionen hat. Diese Säulen sind in einer Pseudozelle vom K3Na(SO4)2-Typ angeordnet. In den Kation-Anion-Säulen ist jede zweite Kationen-Lage des K3Na(SO4)2 in Ca7Mg9(Ca,Mg)2(PO4)12 unbesetzt.

This is a preview of subscription content, log in to check access.

References

  1. Ando, J., 1958: Tricalcium phosphate and its variations. Bull. Chem. Soc. Japan31, 196–201.

  2. —, andS. Matsuno, 1968: Ca3(PO4)2−CaNaPO4 system. Bull. Chem. Soc. Japan41, 342–347.

  3. Berak, J., andJ. Wojciechowska, 1956: Investigation of the system CaO−P2O5−SiO2. II. Partial system 3 CaO · P2O5−2 CaO · SiO2−CaO · SiO2. (Polish) Roczniki Chem.30, 757–771.

  4. Bredig, M. A., 1942: Isomorphism and allotropy in compounds of the type A2XO4. J. Phys. Chem.46, 747–764.

  5. Brown, W. E., 1962: Crystal structure of octacalcium phosphate. Nature196, 1048–1050.

  6. Dickens, B., andW. E. Brown, 1971: The crystal structure of Ca5(PO4)2SiO4 (silico-carnotite). Tschermaks Min. Petr. Mitt.16, 1–27.

  7. Finger, L. W., 1969: Determination of cation distribution by least squares refinement of single crystal X-ray data. Carnegie Inst. Wash., Year Book67, 216–217.

  8. Fuchs, L. H., 1967: Stanfieldite: A new phosphate mineral from stony-iron meteorites. Science158, 910–911.

  9. Gossner, B., 1928: Über die Kristallstruktur von Glaserit und Kaliumsulfat. N. Jb. Min. Geol., Beilg.-Bd.57 A, 89–116.

  10. “International Tables for X-ray Crystallography”, 1962: Birmingham: The kynoch Press.3, p. 202.

  11. Kay, M. I., R. A. Young, andA. S. Posner, 1964: Crystal structure of hydroxyapatite. Nature204, 1050–1052.

  12. Leung, S. W., andA. T. Jenson, 1958: Factors controlling the deposition of calculus. Int. dent. J.8, 613–626.

  13. MacKay, A. L., 1953: A preliminary examination of the structure of α-Ca3(PO4)2. Acta Cryst.6, 743–744.

  14. Nurse, R. W., J. H. Welch, andW. Gutt, 1959: High temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. J. Chem. Soc. 1077–1083.

  15. Pannetier, G., etM. Gaultier, 1966: Analyse radiocrystallographique des formes basse (β) et haute (α) temperature des sulphates de potassium et de thallium (1). Bull. Soc. Chim. France 188–194.

  16. Reimann, C. W., A. D. Mighell, andF. A. Mauer, 1967: The crystal and molecular structure of tetrakispyrazolenickel chloride, Ni(C3H4N2)4Cl2. Acta Cryst.23, 135–141.

  17. Stewart, J. M. (Editor), 1967: Technical Report 67-58. Computer Science Center, College Park, Maryland, University of Maryland.

  18. Wallace, B. M., andW. E. Brown, in press: The stoichiometry of whitlockite. J. dent. Res.

  19. Wondratschek, H., 1963: Untersuchungen zur Kristallchemie der Blei-Apatite (Pyromorphite). N. Jb. Min. Abh.99, 113–160.

Download references

Author information

Additional information

With 6 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dickens, B., Brown, W.E. The crystal structure of Ca7Mg9(Ca,Mg)2(PO4)12 . TMPM Tschermaks Petr. Mitt. 16, 79–104 (1971). https://doi.org/10.1007/BF01099079

Download citation

Keywords

  • Reflection
  • Crystal Structure
  • Geochemistry
  • Counter Method
  • Cation Site