Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The crystal structure of Ca5(PO4)2SiO4 (Silico-Carnotite)

Die Kristallstruktur vonCa 5(PO 4)2 SiO 4 (Silicocarnotit)


The crystal structure of Ca5(PO4)2SiO4 (silico-carnotite) has been determined from 3358 x-ray diffraction data collected by a counter method and has been refined toR w =0.038,R=0.045, in space group Pnma. The unit cell parameters area=6.737 (1) Å,b=15.508 (2) Å andc=10.132 (1) Å at 24°C;Z=4. The observed density is 3.06 and the calculated density is 3.03 g · cm−3. The crystal contains about 2.5% V2O5 as an impurity. The bond lengths within the tetrahedral anions suggest that substitution or disorder of PO4 3−, SiO4 4− and possibly VO4 3− occurs among the anion sites. The structure has some relationship to that of Ca5(PO4)3OH, the predominant inorganic phase in the human body, but suggests that the Ca5(PO4)3OH type structure may not be stable without some of the OH positions being filled. Ca5(PO4)2SiO4 is more closely related to K3Na(SO4)2 (glaserite) if it is considered that there are systematic cation vacancies in Ca5(PO4)2SiO4.

This type of structure is consistent with the view that cation vacancies in the glaserite-type structure account for solid solutions between Ca2SiO4 and Ca3(PO4)2 and between Ca3(PO4)2 and CaNaPO4.


Die Kristallstruktur von Ca5(PO4)2SiO4 (Silicocarnotit) wurde aus 3358 Röntgendiffraktometer-Daten bestimmt und in Raumgruppe Pnma aufR w =0,038,R=0,045 verfeinert. Die Gitterkonstanten (bei 24° C) sind:a=6,737 (1) Å,b=15,508 (2) Å undc=10,132 (1) Å,Z=4; Dobs.=3,06 g · cm−3, Dexp.=3,03 g · cm−3. Der Kristall enthält etwa 2,5% V2O5 als Verunreinigung. Die Bindungslängen in den tetraedrischen Anionen legen nahe, daß unter den Anionenplätzen gegenseitige Vertretung oder Unordnung von PO4 3−, SiO4 4− und möglicherweise VO4 3− auftritt. Die Struktur zeigt einige Verwandtschaft zu der von Ca5(PO4)3OH, der wichtigsten anorganischen Substanz im menschlichen Körper, weist aber darauf hin, daß eine Struktur vom Ca5(PO4)3OH-Typ ohne Besetzung eines Teiles der OH-Position nicht stabil ist. Ca5(PO4)2SiO4 zeigt engere Beziehungen zu K3Na(SO4)2 (Glaserit), wenn man berücksichtigt, daß in Ca5(PO4)3SiO4 systematische Kationen-Leerstellen sind. Dieser Strukturtyp ist mit der

Auffassung in Übereinstimmung, daß Kationenleerstellen für die festen Lösungen zwischen Ca2SiO4 und Ca3(PO4)2 und zwischen Ca3(PO4)2 und CaNaPO4 verantwortlich sind.

This is a preview of subscription content, log in to check access.


  1. Abrahams, S. C., andS. Geller, 1958: Refinement of the structure of a grossularite garnet. Acta Cryst.11, 437–441.

  2. Ando, J., andS. Matsuno, 1968: Ca3(PO4)2−CaNaPO4 system. Bull. Chem. Soc. Japan41, 342–347.

  3. Berak, J., andJ. Wojciechowska, 1956: Investigation of the system CaO−P2O5−SiO2. II. Partial system 3 CaO·P2O5−2 CaO·SiO2−CaO·SiO2 (Polish). Roczniki Chemii30, 757–771.

  4. Birle, J. D., G. V. Gibbs, P. B. Moore, andJ. V. Smith, 1968: Crystal structures of natural olivines. Amer. Min.53, 807–824.

  5. Bredig, M. A., 1942: Isomorphism and allotropy in compounds of the type A2XO4. J. Phys. Chem.46, 747–764.

  6. Brown, W. E., 1962: Crystal structure of octacalcium phosphate. Nature156, 1048–1050.

  7. Carnot, A., andA. Richard, 1883: Silico phosphate de chaux cristallise produit dans la dephosphoration de fonts. Bull. Soc. Min. France6, 237–241.

  8. Dickens, B., 1965: The bonding in red PbO. J. Inorg. Nucl. Chem.27, 1503–1507.

  9. — andW. E. Brown, 1969: The crystal structure of CaNa2(CO3)2·5H2O, synthetic gaylusite, and CaNa2(CO3)2·2 H2O, synthetic pirssonite. Inorg. Chem.8, 2093–2103.

  10. ——, 1971: The crystal structure of Ca7Mg9(Ca, Mg)2(PO4)12. Tschermaks Min. Petr. Mitt.16, 79–104.

  11. Finger, L. W., 1969: Determination of cation distribution by least squares refinement of single crystal X-ray data. Carnegie Inst. Wash. Year Book67, 216–217.

  12. Gossner, B., 1928: Über die Kristallstruktur von Glaserit und Kaliumsulfat. N. Jb. Min. Geol., Beilg.-Bd.57 A, 89–116.

  13. Hilmy, M. E., 1953: Structural crystallographic relation between sodium sulphate and potassium sulfate and some other synthetic sulfate minerals. Amer. Min.38, 118–135.

  14. “International Tables for X-ray Crystallography”, 1962: Birmingham: The Kynoch Press.3, p. 202.

  15. Kay, M. I., R. A. Young, andA. S. Posner, 1964: Crystal structure of hydroxyapatite. Nature204, 1050–1052.

  16. Keppler, U., 1968: S-Phase und Verbindung C5PS, Ca5(PO4)2SiO4. N. Jb. Min. Mh.9, 320–330.

  17. Kroll, V. A., 1911: Researches on the nature of the phosphates contained in basic slag derived from the Thomas-Gilchrist dephosphorisation process. J. Iron Steel Inst.84, 126–187.

  18. Nurse, R. W., J. H. Welch, andW. Gutt, 1959: High temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. J. Chem. Soc. 1077–1083.

  19. Pauling, L., 1960: Nature of the chemical bond. 3 Ed. Ithaca: Cornell University Press.

  20. Reimann, C. W., A. D. Mighell, andF. A. Mauer, 1967: The crystal and molecular structure of tetrakispyrazolenickel chloride, Ni(C3H4N2)4Cl2. Acta Cryst.23, 135–141.

  21. Riley, D. P., andE. R. Segnit, 1949: An optical and X-ray examination of the basic-slag mineral silico-carnotite. Min. Mag.28, 496–504.

  22. Selbin, J., 1966: Oxovanadium (IV) complexes. Coord. Chem. Rev.1, 293–314.

  23. Stead, J. E., C. H. Risdale, andH. A. Miers, 1887: Crystals in basic converter slag. J. Chem. Soc.51, 601–610.

  24. Stewart, J. M. (Editor), 1967: Technical Report 67-58. Computer Science Center, University of Maryland, College Park, Maryland 20742.

  25. Trömel, G., H. Harkort undW. Hotop, 1948: Untersuchungen im System CaO−P2O5−SiO2. Z. Anorg. Allgem. Chem.256, 253–348.

  26. — andH. Moller, 1951: X-ray investigations of calcium orthosilicate Ca2SiO4 at temperatures up to 1500°C. Silicates Industrials16, 300–301.

  27. — undC. Zaminer, 1959: Untersuchungen an den Kristallen der Thomasschlacke. Arch. Eisenhüttenwesen30, 205–209.

  28. Valkenburg, Jr., A. van, andH. F. McMurdie, 1947: High temperature X-ray diffraction apparatus. J. Res. Nat. Bureau of Standards.38 415 to 418.

  29. Wondratscheck, H., 1963: Untersuchungen zur Kristallchemie der Blei-Apatite (Pyromorphite). N. Jb. Miner., Abh.99, 113–160.

  30. Wyckoff, R. W. G., 1965: Crystal structures. Second Edition, Interscience, John Wiley & Sons, p. 242.

Download references

Author information

Additional information

With 9 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dickens, B., Brown, W.E. The crystal structure of Ca5(PO4)2SiO4 (Silico-Carnotite). TMPM Tschermaks Petr. Mitt. 16, 1–27 (1971).

Download citation


  • Geochemistry
  • V2O5
  • Unit Cell Parameter
  • Counter Method
  • Cation Vacancy