Climatic Change

, Volume 27, Issue 1, pp 13–26 | Cite as

Rice paddies as a methane source

  • K. Minami
  • H. -U. Neue
Article

Abstract

Rice fields are considered to be among the highest sources of atmospheric methane, an important source of global warming. In order to meet the projected rice needs of the increasing world population, it is estimated that the annual world's rough rice production must increase to 760 million tons (a 65% increase) in the next 30 years. This will increase methane emissions from ricefields if current technologies are kept. Methane emissions from ricefields are affected by climate, water regime, soil properties, and various cultural practices like irrigation and drainage, organic amendments, fertilization, and rice cultivars. Irrigated rice comprises 50% of the world-harvested rice area and contributes 70% to total rice production. Because of assured flooding during the growing period it is the primary source of methane. Rainfed rice emits less methane due to periods of droughts. Upland rice, being never flooded for a significant period of time, is not a significant source of methane. There is great potential to develop ‘no regret’ mitigation options that are in accordance with increasing rice production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abram, J. W. and Nedwell, D. B.: 1978, ‘Inhibition of Methanogenesis by Sulfate Reducing Bacteria Competing from Transferred Hydrogen’,Arch. Microbiol. 117, 89–92.Google Scholar
  2. Aselmann, I. and Crutzen, P. J.: 1989, ‘The Global Distribution of Natural Freshwater Wetlands and Rice Paddies, Their Net Primary Productivity, Seasonality and Possible Methane Emission’,J. Atm. Chem. 8, 307–358.Google Scholar
  3. Balderstone, W. L. and Payne, W. J.: 1976, ‘Inhibition of Methanogenesis in Salt Marsh Sediments and Whole-Cell Suspensions of Methanogenic Bacteria by Nitrogen Oxides’,Appl. Environ. Microbiol. 32, 264–269.Google Scholar
  4. Bingemer, H. G. and Crutzen, P. J.: 1987, ‘The Production of Methane from Solid Wastes’,J. Geophys. Res. 92(D, 2181–2187.Google Scholar
  5. Blake, D. R. and Rowland, F. S.: 1988, ‘Continuing Worldwide Increase in Tropospheric Methane, 1978 to 1987’,Science 239, 1129–1131.Google Scholar
  6. Bouwman, A. F.: 1990, ‘Exchange of Greenhouse Gases Between Terrestrial Ecosystems and the Atmosphere’, in Bouwman, A. F. (ed.),Soil and the Greenhouse Effect, John Wiley and Sons, pp. 62–127.Google Scholar
  7. Bremner, J. M. and Blackmer, A. M.: 1982, ‘Composition of Soil Atmospheres’, inMethods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Agronomy Monograph No. 9, 873–901.Google Scholar
  8. Bronson, K. F. and Mosier, A. R.: 1991, ‘Effect of Encapsulated Calcium Carbide on Dinitrogen, Nitrous Oxide, Methane and Carbon Dioxide Emissions from Flooded Rice’,Biol. Fertil. Soils 3, 116–120.Google Scholar
  9. Butterbach-Bahl, K.: 1992, ‘Mechanisms of Production and Emission of Methane in Rice Fields’, Dissertation. Technical University Munich, Germany, in German.Google Scholar
  10. Cicerone, R. J. and Oremland, R. S.: 1988, ‘Biogeochemical Aspects of Atmospheric Methane’,Glob. Biogeochem. Cycl. 2, 299–327.Google Scholar
  11. Cicerone, R. J. and Shetter, J. D.: 1981, ‘Sources of Atmospheric Methane: Measurements in Rice Paddies and a Discussion’,J. Geophys. Res. 86, 7203–7209.Google Scholar
  12. Cicerone, R. J., Shetter, J. D., and Delwiche, C. C.: 1983, ‘Seasonal Variation of Methane Flux from a California Rice Paddy’,J. Geophys. Res. 88, 7203–7209.Google Scholar
  13. Conrad, R.: 1989, ‘Control of Methane Production in Terrestrial Ecosystems’, inExchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Andreae, M. O. and Schimel, D. S. (eds.), pp. 39–58.Google Scholar
  14. Craig, H. and Chou, C. C.: 1982, ‘Methane: The Record in Polarice Core’,Geophys. Res. Lett. 9, 1221–1224.Google Scholar
  15. Crutzen, P. J.: 1985, ‘The Role of the Tropics in Atmospheric Chemistry’, inGeophysiology of Amazonia, Dickinson, R. (ed.), J. Wiley, Chichester, pp. 107–132.Google Scholar
  16. Denier van der Gon, H. A. C., Neue, H. U., Lantin, R. S., Wassmann, R., Alberto, M. C. R., Aduna, J. B., and Tan, M. J. P.: 1992, ‘Controlling Factors of Methane Emission from Rice Fields’, pp. 81–92 in Batjes, N. H., Bridges, E. M. (eds.): ‘World Inventory of Soil Emission Potentials’, WISE Report No. 2, International Soil Reference and Information Centre (ISRIC), Wageningen.Google Scholar
  17. Dickinson, R. E. and Cicerone, R. J.: 1986, ‘Future Global Warming from Atmospheric Trace Gases’,Nature 319, 109–115. Ehhalt, D. H. and Schmidt, U.: 1978, ‘Sources and Sinks of Atmospheric Methane’,Pure Appl. Geophys. 116, 452–464.Google Scholar
  18. Graedel, T. E. and McRae, J. E.: 1980, ‘On the Possible Increase of the Atmospheric Methane and Carbon Monoxide Concentrations During the Last Decade’,Geophys. Res. Lett. 7, 977–979.Google Scholar
  19. Holzapfel-Pschorn, A. and Seiler, W.: 1986, ‘Methane Emission during a Cultivation Period from an Italian Rice Paddy’,J. Geophys. Res. 91, 11803–11814.Google Scholar
  20. Holzapfel-Pschorn, A., Conrad, R., and Seiler, W.: 1985, ‘Production, Oxidation, and Emission of Methane in Rice Paddies’,FEMS Microbiol. Ecol. 31, 343–351.Google Scholar
  21. IRRI (International Rice Research Institute): 1991, ‘World Rice Statistics 1990’, P.O. Box 933, Manila, Philippines.Google Scholar
  22. IRRI (International Rice Research Institute): 1993, ‘Program report for 1992’, P.O. Box 933, Manila, Philippines.Google Scholar
  23. Khalil, M. A. K. and Rasmussen, R. A.: 1983, ‘Sources, Sinks and Seasonal Cycles of Atmospheric Methane’,J. Geophys. Res. 88, 5131–5144.Google Scholar
  24. Khalil, M. A. K. and Rasmussen, R. A.: 1989, ‘Climate Induced Feedback for the Global Cycles of Methane and Nitrous Oxide’,Tellus 41B, 554–559.Google Scholar
  25. Khalil, M. A. K., Rasmussen, R. A., Wang, M. X., and Ren, L.: 1991, ‘Methane Emission from Rice fields in China’,Environ. Sci. Technol. 25, 979–981.Google Scholar
  26. Koyama, T.: 1964, ‘Biogeochemical Studies on Lake Sediments and Paddy Soils and the Production of Hydrogen and Methane’, Recent Researches in the Field of Hydrosphere. Atm. Geochem. Miyazaki, T. and Koyama, T. (eds.), Maruzen, Tokyo, pp. 143–177.Google Scholar
  27. Kumagi, K., Yagi, K., Tsuruta, H., and Minami, K.: 1993, ‘Emission, Production and Oxidation of Methane from Japanese Paddy Fields’,Jpn. J. Soil Sci. Plant Nutr., in press.Google Scholar
  28. Lindau, C. W., Bollich, P. K., DeLaune, R. D., Patrick, W. H. Jr., and Law, V. J.: 1991, ‘Effect of Urea Fertilizer and Environmental Factors on CH4 Emissions from a Louisiana, U.S.A. Rice field’,Plant Soil 136, 195–203.Google Scholar
  29. Lindau, C. W., Bollich, P. K., DeLaune, R. D., Mosier, A. L., and Bronson, K. F.: 1993, ‘Methane Mitigation in Flooded Louisiana Rice Fields’,Biol. Fert. Soils, in press.Google Scholar
  30. Matthews, E., Fung, I., and Lerner, J.: 1991, ‘Methane Emission from Rice Cultivation; Geographic and Seasonal Distribution of Cultivated Areas and Emissions’,Glob. Biogeochem. Cycl. 5, 3–24.Google Scholar
  31. Minami, K. and Yagi, K.: 1988, ‘Method for Measuring Methane Flux from Rice Paddies’,Jpn. J. Soil Sci. Plant Nutr. 59, 458–463, in Japanese.Google Scholar
  32. Neue, H. U.: 1991, ‘A Holistic View of the Chemistry of Flooded Soils’, pp. 5–32 inSoil Management for Sustainable Rice Production in the Tropics, International Board for Soil Research and Management, IBSRAM Monograph No. 2.Google Scholar
  33. Neue, H. U. and Bloom, P. R.: 1989, ‘Nutrient Kinetics and Availability in Flooded Soils’, pp. 173–190 inProgress in Irrigated Rice Research, International Rice Research Institute, P.O. Box 933, Manila, Philippines.Google Scholar
  34. Neue, H. U. and Scharpenseel, H. W.: 1984, ‘Gaseous Products of the Decomposition of Organic Matter in Submerged Soils’, pp. 311–328 inOrganic Matter and Rice, International Rice Research Institute, P.O. Box 933, Manila, Philippines.Google Scholar
  35. Neue, H. U., Becker-Heidmann, P., and Scharpenseel, H. W.: 1990, ‘Organic Matter Dynamics, Soil Properties, and Cultural Practices in Rice Lands and Their Relationship to Methane Production’, pp. 457–466 in Bouwman, A. F. (ed.),Soils and the Greenhouse Effect, John Wiley and Sons, Chichester.Google Scholar
  36. Neue, H. U. and Roger, P. A.: 1993, ‘Rice Agriculture: Factors Controlling Emissions’, pages 254–298, in Khalil, M. A. K. (ed.),The Global cycle of Methane: Sources, Sinks, Distribution and Role in Global Change, NATO Advanced Science Series, Springer Verlag, Berlin.Google Scholar
  37. Neue, H. U., Lantin, R. S., Wassmann, R., Aduna, J. B., Alberto, M. C. R., and Andales, J. F.: 1994, ‘Methane Emission from Rice Soils of the Philippines’, inMethane and Nitrous Oxide Emission from Natural and Anthropogenic Sources, National Institute of Agro-Environmental Sciences (NIAES), Japan, in press.Google Scholar
  38. Nouchi, I., Mariko, S., and Aoki, K.: 1990, ‘Mechanisms of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plant’,Plant Physiol. 94, 59–66.Google Scholar
  39. Parashar, D., Rai, C. J., Gupta, P. K., and Singh, N.: 1991, ‘Parameters Affecting Methane Emission from Paddy Fields’,Indian J. Radio Space Physics 20, 12–17.Google Scholar
  40. Patrick, W. H. Jr. and DeLaune, R. D.: 1977, ‘Chemical and Biological Redox Systems Affecting Nutrient Availability in the Coastal Wetlands’,Geosci. Man. 28, 131–137.Google Scholar
  41. Patrick, W. H. Jr.: 1981, ‘The Role of Inorganic Redox Systems in Controlling Reduction in Paddy Soils’, inProc. Symp. Paddy Soil, 107–117, Science Press, Beijing, Spring Verlag.Google Scholar
  42. Ponnamperuma, F. N.: 1972, ‘The Chemistry of Submerged Soils’,Adv. Agron. 24, 29–96.Google Scholar
  43. Ponamperuma, F. N.: 1984, ‘Effects of Flooding on Soils’, pp. 9–45 in Kozlowski, T. T. (ed.),Flooding and Plant Growth, Academic Press, New York.Google Scholar
  44. Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T.: 1985, ‘Trace Gas Trends and Their Potential Role in Climate Change’,J. Geophys. Res. 90(D, 5547–5566.Google Scholar
  45. Rasmussen, R. A. and Khalil, M. A. K.: 1981, ‘Increase in the Concentration of Atmospheric Methane’,Atmos. Environ. 15, 883–886.Google Scholar
  46. Rasmussen, R. A. and Khalil, M. A. K.: 1984, ‘Atmospheric Methane in the Recent and Ancient Atmospheres: Concentrations, Trends and Interhemispheric Gradient’,J. Geophys. Res. 89(D, 11599–11605.Google Scholar
  47. Rowland, F. S.: 1991, ‘Stratospheric Ozone in the 21st Century, The Chlorofluorocarbon Problem’,Environ. Sci. Technol. 25, 622–628.Google Scholar
  48. Sass, R. L., Fisher, F. M., Harcombe, P. A., and Turner, F. T.: 1990, ‘Methane Production and Emission in a Texas Rice Field’,Glob. Biogeochem. Cycl. 4, 47–68.Google Scholar
  49. Sass, R. L., Fisher, F. M., Turner, F. T., and Jund, M. F.: 1991, ‘Methane Emission from Rice Fields as Influenced by Solar Radiation, Temperature, and Straw Incorporation’,Glob. Biogeochem. Cycl 5, 335–350.Google Scholar
  50. Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., and Seiler, W.: 1989a, ‘A Three-Year Continuous Record on the Influence of Daytime Season and Fertilizer Treatment on Methane Emission Rates from an Italian Rice Paddy Field’,J. Geophys. Res. 94, 16405–16416.Google Scholar
  51. Schütz, H., Seiler, W., and Conrad, R.: 1989b, ‘Processes Involved in Formation and Emission of Methane in Rice Paddies’,Biogeochemistry 7, 33–53.Google Scholar
  52. Schütz, H., Seiler, W., and Rennenberg, H.: 1990, ‘Soil and Land Use Related Sources and Sinks of Methane in the Context of the Global Methane Budget’, pp. 268–285 in Bouwman, A. F. (ed.),Soils and the Greenhouse Effect, John Wiley and Sons, Ltd., New York.Google Scholar
  53. Seiler, W.: 1984, ‘Contribution of Biological Processes to the Global Budget of CH4 in the Atmosphere’, pp. 468–477 in Kleig, M. J. and Reddy, C. A. (eds.),Current Perspectives in Microbial Ecology, American Society of Microbiology, Washington, DC.Google Scholar
  54. Seiler, W. and Conrad, R.: 1987, ‘Contribution of Tropical Ecosystems to the Global Budget of Trace Gases Especially CH4, H2, CO and N2O, pp. 133–162 inThe Geography of Amazonia: Vegetation and Climate Interactions, Dickinson, R. E. (ed.), Wiley, New York.Google Scholar
  55. Seiler, W., Holzapfel-Pschorn, A., Conrad, R., and Scharffe, D.: 1984, ‘Methane Emissions from Rice Paddies’,J. Atmos. Chem. 1, 241–268.Google Scholar
  56. Sheppard, J. C., Westberg, H., Hopper, J. F., Ganesan, K., and Zimmerman, P.: 1982, ‘Inventory of Global Methane Sources and Their Production Rates’,J. Geophys. Res. 87(C, 1305–1312.Google Scholar
  57. Takai, Y.: 1970, ‘The Mechanism of Methane Fermentation in Flooded Paddy Soil’,Soil Sci. Plant Nutr. 16, 238–244.Google Scholar
  58. Takai, Y.: 1980, ‘Microbial Study on the Behavior of the Paddy Soils’,Fert. Sci. 3, 17–55, in Japanese.Google Scholar
  59. Takai, Y., Koyama, T., and Kamura, T.: 1956, ‘Microbial Metabolism in Reduction Process of Paddy Soils (Part 1)’,Soil Plant Food 2, 63–66.Google Scholar
  60. Thompson, A. M. and Cicerone, R. J.: 1986, ‘Possible Perturbations to Atmospheric CO, CH4 and OH’,J. Geophys. Res. 91(D, 10858–10864.Google Scholar
  61. Wang, M. X., Dai, A., Shen, R. X., Wu, H. B., Schütz, H., Rennenberg, H., and Seiler, W.: 1990, ‘CH4 Emission from a Chinese Rice Paddy Field’,Acta Meteorol. Sin. 4, 265–275.Google Scholar
  62. Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, J. E., and Hansen, J. E.: 1976, ‘Greenhouse Effects due to Man-Made Perturbations of Trace Gases’,Science 194, 685–690.Google Scholar
  63. Wang, Z. P., DeLaune, R. D., Masscheleyn, P. H., Patrick, W. H. Jr.: 1993, ‘Soil Redox and pH Effects on Methane Production in a Flooded Rice Soil’,Soil Sci. Soc. Am. J., in press.Google Scholar
  64. Ward, D. M. and Winfrey, M. R.: 1985, ‘Interactions between Methanogenic and Sulfate-Reducing Bacteria in Sediments’,Adv. Aquatic Microbiol. 3, 141–179.Google Scholar
  65. Watson, R. T., Rode, H., Oeschger, H., and Siegenthaler, U.: 1990, ‘Greenhouse Gases and Aerosol’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.),Climate Change, the IPCC Scientific Assessment, Cambridge Univ., New York 1–40.Google Scholar
  66. Watson, R. T., Meira Filho, L. G., Sanhueza, E., and Janetos, A.: 1992, ‘Greenhouse Gases; Sources and Sinks’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.),Climate Change 1992, The Supplementary Reports on the IPCC Scientific Assessment, Cambridge Univ., New York, pp. 25–46.Google Scholar
  67. Williams, R. T. and Crawford, R. L.: 1985, ‘Methanogenic Bacteria Including an Acid Tolerant Strain from Peatlands’,Appl. Environ. Microbiol. 50, 1542–1544.Google Scholar
  68. Yagi, K. and Minami, K.: 1990a, ‘Effect of Organic Matter Application on Methane Emission from Some Japanese Paddy Fields’,Soil Sci. Plant Nutr. 36, 599–610.Google Scholar
  69. Yagi, K. and Minami, K.: 1990b, ‘Estimation of Global Methane Emission from Paddy Fields’,Res. Rep. Div. Environ. Planning, NIAES,6, 131–142.Google Scholar
  70. Yagi, K. and Minami, K.: 1992, ‘Spatial and Temporal Variations of Methane Flux from a Rice Paddy Field’, 10th Int. Symp. Environ. Biogeochem., in press.Google Scholar
  71. Yagi, K., Tsuruta, H., and Minami, K.: 1992, ‘Methane Emission from Japanese and Thai Paddy Fields’, CH4 and N2O Workshop, Tsukuba, in press.Google Scholar
  72. Yamane, I. and Sato, K.: 1961, ‘Effect of Temperature on the Formation of Gases and Ammonium Nitrogen in the Water-Logged Soils’,Sci. Rep. Res. Inst. Tohoku Univ. D(Agr.) 12, 31–46.Google Scholar
  73. Yamane, I. and Sato, K.: 1963, ‘Decomposition of Plant Constituents and Gas Formation in Flooded Soil’,Soil Sci. Plant Nutr. 9, 28–31.Google Scholar
  74. Yamane, I. and Sato, K.: 1964, ‘Decomposition of Glucose and Gas Formation in Flooded Soil’,Soil Sci. Plant Nutr. 10, 127–133.Google Scholar
  75. Yoshida, T.: 1978, ‘Microbial Metabolism in Rice soils’, inSoils and Rice, Int. Rice Res. Inst., 445–463.Google Scholar

Copyright information

© Kluwer Academic Publishers. Printed in the Netherlands 1994

Authors and Affiliations

  • K. Minami
    • 1
  • H. -U. Neue
    • 2
  1. 1.TsukubaNational Institute of Agro-Environmental SciencesJapan
  2. 2.International Rice Research InstituteManilaPhilippines

Personalised recommendations