Advertisement

Journal of Global Optimization

, Volume 4, Issue 3, pp 265–278 | Cite as

On the existence of efficient points in locally convex spaces

  • Truong Xuan Duc Ha
Article

Abstract

We study the existence of efficient points in a locally convex space ordered by a convex cone. New conditions are imposed on the ordering cone such that for a set which is closed and bounded in the usual sense or with respect to the cone, the set of efficient points is nonempty and the domination property holds.

Key words

Multiobjective optimization efficient point domination property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakhtin, I. A. (1977),Cones in Banach Spaces, Voronezh (in Russian).Google Scholar
  2. 2.
    Borwein, J. M. (1980), The geometry of Pareto efficiency over cones,Math. Operationsforsch. Stat. Ser. Optimization 11, 235–248.Google Scholar
  3. 3.
    Borwein, J. M. (1983), On the existence of Pareto efficient points,Mathematics of Operations Research 8, 64–73.Google Scholar
  4. 4.
    Cesari, L. and Suryanarayana, M. B. (1978), Existence theorems for Pareto optimization; multivalued and Banach space valued functional,Transactions of American Math. Society 244, 37–67.Google Scholar
  5. 5.
    Corley, H. W. (1980), An existence result for maximization with respect to cones,J. of Optimization Theory and Applications 31, 277–281.Google Scholar
  6. 6.
    Corley, H. W. (1987), Existence and Lagrangian duality for maximizations of set-valued maps,J. of Optimization Theory and Applications 54, 489–501.Google Scholar
  7. 7.
    Hartley, R. (1978), On cone-efficiency cone-convexity and cone-compactness,SIAM J. Optimization Theory Application 34, 211–222.Google Scholar
  8. 8.
    Isac, G. (1983), Sur l'existence de l'optimum de Pareto,Rivista Di Matematica Dell Universita di Parma 9(4), 303–325.Google Scholar
  9. 9.
    Jahn, J. (1986), Existence theorems in vector optimization,J. of Optimization Theory and Applications 50, 397–406.Google Scholar
  10. 10.
    Luc, D. T. (1989),Theory of Vector Optimization, Springer-Verlag.Google Scholar
  11. 11.
    Krasnoselski, M. A. (1964),Positive Solutions of Operator Equations, Groningen, Noordhoff.Google Scholar
  12. 12.
    Krasnoselski, M. A. and Rutiski, Ya. B. (1961),Convex Functions and Orlicz Spaces, Groningen, Noordhoff.Google Scholar
  13. 13.
    Peressini, A. L. (1967),Ordered Topological Vector Spaces, Harper and Row Publisher, New York.Google Scholar
  14. 14.
    Postolica, V. (1989), Existence conditions for efficient points for multifunctions with values in locally convex spaces,Study Cerc Math. 41(4), 325–331.Google Scholar
  15. 15.
    Schaefer, H. H. (1971),Topological Vector Spaces, Springer-Verlag.Google Scholar
  16. 16.
    Sterna-Karwat, A. (1986), On existence of cone-maximal points in real topological linear spaces,Israel J. of Mathematics 54(1), 33–41.Google Scholar
  17. 17.
    Sterna-Karwat, A. (1987), A note on cone-maximal and extreme points in topological vector space,Numerical Functional Analysis and Optimization 9(5&6), 647–655.Google Scholar
  18. 18.
    Tanino, T. and Sawaragi, Y. (1980), Conjugate maps and duality in multiobjective optimization,J. of Optimization Theory and Applications 31(4), 473–499.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Truong Xuan Duc Ha
    • 1
  1. 1.Institute of Mathematics, HanoiBoho, HanoiVietnam

Personalised recommendations