Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Covariant functors in categories of topological spaces

Abstract

This survey is devoted to the properties of certain concrete covariant functors-normal and almost normal functors-in the category of compacta, as well as the algebraic theory of covariant functors, and the connections between the theory of functors with absolute extensors and manifolds.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    B. V. Atamanyuk, “Functors of iterated superextension”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 3, 58 (1989).

  2. 2.

    T. O. Banakh and M. M. Zarichnyi, “On compactifications of iteratated hyperspace functors”, Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 3–6 (1987).

  3. 3.

    V. N. Basmanov, “On inductive dimensionality of product spaces”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 17–20 (1981).

  4. 4.

    V. N. Basmanov, “Some functors with finite support and dimensionality”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 6, 48–50 (1981).

  5. 5.

    V. N. Basmanov, “Covariant functors, retracts, and dimensionality”, Dokl. AN SSSR,271, No. 5, 1033–1036 (1983).

  6. 6.

    V. N. Basmanov, Functors Transforming ConnectedANR-Bicompacta into Singly Connected Spaces, VINITI report, No. 2781–83.

  7. 7.

    V. N. Basmanov, “Functors transforming connectedANR-bicompacta into singly connected spaces”, Vestn. Mosk. Gos. Univ., Mat. Mekh, No. 6, 40–42 (1984).

  8. 8.

    V. N. Basmanov, “Covariant functors of finite degree and connectivity”, Dokl. AN SSSR,279, No. 6, 1289–1293 (1984).

  9. 9.

    S. A. Bogatiyi and V. V. Fedorchuk, “Theory of retracts and infinite-dimensional manifolds”, Itogi Nauki i Tekhniki VINITI. Algebra. Topologiya, Geometriya, No. 24, 195–270 (1986).

  10. 10.

    A. N. Vybornov, Hyperspaces of Complete Metric Separable Zero-Dimensional Spaces, VINITI report, No. 7912-84.

  11. 11.

    A. N. Vybornov, “Spaces of compact subsets of locally bicompact zero-dimensional separable metric spaces”, in: Maps and Functors [in Russian], Moscow State Univ. (1984), pp. 17–23.

  12. 12.

    A. N. Vybornov, “Extension of homeomorphisms and exponents of zero-dimensional locally compact metrizable spaces”, in: Cardinal Invariants and Mappings of Topological Spaces [in Russian], Izhevsk (1984), pp. 80–81.

  13. 13.

    A. N. Vybornov, Classification of the Exponents of Locally Compact Metric Zero-Dimensional Spaces, VINITI report, No. 7911-84.

  14. 14.

    A. N. Vybornov, “Spaces of compact subsets of zero-dimensional Polish spaces with everywhere dense sets of isolated points”, Usp. Mat. Nauk,39, No. 4, 153–154 (1984).

  15. 15.

    A. N. Vybornov, “Exponents of zero-dimensional Polish spaces”, Dokl. AN SSSR,284, No. 5, 1053–1057 (1985).

  16. 16.

    V. I. Golov, “Hilbert spaces as hyperspaces of ordered arcs”, in: Functional Analysis and Its Applications in Mechanics and Probability Theory [in Russian], Moscow (1984), pp. 13–18.

  17. 17.

    V. I. Golov, “Ordered arecs of Peano continua. A layer variant”, Vestn. Mosk. Gos. Univ., Mat. Mekh, No. 3, 13–18 (1984).

  18. 18.

    A. N. Dranishnikov, “Mixers. The converse of a theorem of van Mill and van de Vel”, Mat. Zametki.37, No. 4, 587–593 (1984).

  19. 19.

    A. N. Dranishnikov, “Covariant functors and extensors in n dimensions”, Usp. Mat. Nauk,40, No. 6, 133–134 (1985).

  20. 20.

    A. N. Dranishnikov, “AbsoluteF-valued retracts and spaces of functions in the topology of pointwise convergence”, Sib. Mat. Zh.,27, No. 3, 74–86 (1986).

  21. 21.

    A. N. Dranishnikov, “OnQ-stratification without disjunctive cuts”, Funk. Anal. Prilozhen.,22, No. 2, 79–80 (1988).

  22. 22.

    L. G. Zambakhidze, “Interrelations between local boundary properties of topological spaces”, Soobshch. AN GruzSSR,94, No. 3, 557–560 (1979).

  23. 23.

    M. M. Zarichnyi, “The functors λ n and absolute retracts”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 4, 15–19 (1982).

  24. 24.

    M. M. Zarichnyi, Subfunctors of Superextension Functors, VINITI report, No. 316-82.

  25. 25.

    M. M. Zarichnyi, “Hypersymmetric powers of supercompacta”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 18–21 (1983).

  26. 26.

    M. M. Zarichnyi, “Preservation ofANR(M)-spaces and infinite-dimensional manifolds by some covariant functors”, Dokl. AN SSR,271, No. 3, 524–528 (1983).

  27. 27.

    M. M. Zarichnyi, “The fundamental group of superextensions λ n X”, in Mappings and Functors [in Russian], Moscow State Univ. (1984), pp. 24–31.

  28. 28.

    M. M. Zarichnyi, “On a result of J. van Mill and A. Shriver”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 2, 6–8 (1985).

  29. 29.

    M. M. Zarichnyi, Visn. L'viv. Univ. Ser. Mekh. Mat., No. 24, 65–69 (1985).

  30. 30.

    M. M. Zaqrichnyi, Visn. L'viv. Univ. Ser. Mekh. Mat. No. 25, 52–56 (1986).

  31. 31.

    M. M. Zarichnyi, “Iterated superextensions”, in: General Topology. Mappings of Topological Spaces [in Russian], Moscow State Univ. (1986), pp. 45–59.

  32. 32.

    M. M. Zarichnyi, “Monadic functors of finite degree”, in: Problems of Geometry and Topology [in Russian], Petrozavodsk,(1986), pp. 24–30.

  33. 33.

    M. M. Zarichnyi, “A Multiplicative normal functor is a power functor”, Mat. Zametki,41, No. 1, 93–100 (1987).

  34. 34.

    M. M. Zarichnyi, “The monad of superextensions and its algebras”, Ukr. Mat. Zh.,39, No. 3, 303–309 (1987).

  35. 35.

    M. M. Zarichnyi, Visn. L'viv. Univ. Ser. Mekh. Mat. No. 30, 30–32 (1988).

  36. 36.

    M. M. Zarichnyi and L. P. Plakhta, “Normal functors of finite degree on the categoryPL”, Dokl. AN Ukr. SSR, No. 9, 5–9 (1988).

  37. 37.

    A. V. Ivanov, “Superextensions of metrizable continua and the generalized Cantor discontinuum”, Dokl. AN SSSR,254, No. 2, 279–281 (1980).

  38. 38.

    A. V. Ivanov, “On the superextension λ n ”, Usp. Mat. Nauk,36, No. 3, 213–214 (1981).

  39. 39.

    A. V. Ivanov, “Superextensions of openly generated bicompacta”, Dokl. AN SSSR,259, No. 2, 275–278 (1981).

  40. 40.

    A. V. Ivanov, “A solution to van Mill's problem on characterizations of compacta whose superextensions are absolute retracts”, Dokl. AN SSSR,262, No. 3, 526–528 (1982).

  41. 41.

    A. V. Ivanov, “The supperextensionI τ of a Tychonoff cube is homeomorphic toI τ”, Mat. Zametki,33, No. 5, 763–772 (1983).

  42. 42.

    A. V. Ivanov, “Superextension functors and smooth maps”, Mat. Zametki,36, No. 1, 1984.

  43. 43.

    A. V. Ivanov, “A theorem on almost fixed points for mappings of spaces of maximalK-chained systems”, in: Problems of Geometry and Topology [in Russian], Petrozavodsk (1986), pp. 31–40.

  44. 44.

    A. V. Ivanov, “Spaces of complete chained systems”, Sib. Mat. Zh.,27, No. 6, 95–110 (1986).

  45. 45.

    N. L. Koval', “Peano-valued absolute retracts”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 3–5 (1987).

  46. 46.

    A. P. Kombarov, “Hereditary paracompactness ofX 2 and metrizability ofX”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 2, 79–81 (1988).

  47. 47.

    V. O. Kuznetsov, “A space of coles subsets”, Dokl. AN SSSR,178, No. 6, 1248–1251 (1968).

  48. 48.

    R. S. Lintschuk, “The dimensionality of hyperspaces”, Ukr. Mat. Zh.,30, No. 3, 378–381 (1978)1.

  49. 49.

    V. O. Kuznetsov, “Dyadic spaces in certain hyperspaces”, Ukr. Mat. Zh.,30, No. 2, 232–234 (1978).

  50. 50.

    V. O. Kuznetsov, “Hyperextensions of set-valued maps and spectral representation of certain hyperspaces”, Ukr. Mat. Zh.,33, No. 2, 248–252 (1981).

  51. 51.

    V. O. Kuznetsov, “The properties of some hyperspaces of infinite-dimensional type”, Ukr. Mat. Zh.,34, No. 6, 774–775 (1982).

  52. 52.

    V. O. Kuznetsov and V. M. Safonov, “Exponential topology”, Ukr. Mat. Zh.,35, No. 2, 164–168 (1983).

  53. 53.

    V. O. Kuznetsov and V. I. Sirik, “On the dimensionality of spaces of subsets”, in: Function Theory and Topology [in Russian], Kiev (1983), pp. 68–76.

  54. 54.

    V. O. Kuznetsov and V. I. Sirik, “On the dimensionality of hyperspaces”, in: Function Theory and Topology [in Russian], Kiev (1983), pp. 76–83.

  55. 55.

    V. I. Malykhin, “Tightness and the Suslin number in expX in in product spaces”, Dokl. AN SSSR,203, No. 5, 1001–1003 (1972).

  56. 56.

    V. I. Malykhin, “Properties lost by topological groups when they are squared”, Sib. Mat. Zh.,28, No. 4, 154–161 (1987).

  57. 57.

    M. M. Mar'yanovich, “Higher-order hyperspaces”, Dokl. AN SSSR,278, No. 1, 34–37 (1984).

  58. 58.

    R. É. Mirzakhanyan, “Infinite iteration of the inclusion-hyperspace functor”, Vestn. Mosk. Gos. Univ., Ser. 1, No. 6, 14–17 (1988).

  59. 59.

    R. É. Mirzakhanyan, “A functor for continuation of the inclusion hyperspace”, Vestn. Mosk. Gos. Univ., Ser. 1, No. 2, 75–77 (1989).

  60. 60.

    E. V. Moiseev, “Spaces of closed growth and inclusion hyperspaces”, Vestn. Mosk. Gos. Univ., Mat. Mekh, No. 3, 54–57 (1988).

  61. 61.

    E. V. Moiseev, Functors of Closed Growth and Inclusion Hyperspaces, VINITI report, No. 3515-B89.

  62. 62.

    M. Mrshchevich, “Properties of the space 2X of the topologicalR 0-space”, Usp. Mat. Nauk,34, No. 6, 166–170 (1979).

  63. 63.

    G. M. Hepomnyashchii, “Spectral decomposition of manifolds of absolute retracts”, Usp. Mat. Nauk,36, No. 3, 221–222 (1981).

  64. 64.

    B. A. Pasynkov, “The dimensionality of topological products and limits of inverse sequences”, Dokl. AN SSSR,254, No. 6, 1332–1336 (1980).

  65. 65.

    A. Pelczynski, Linear Continuation, Linear Extension, and Their Application to Linear Topological Classification of Spaces of Continuous Functions [Russian translation], Mir, Moscow (1970).

  66. 66.

    L. P. Plakhta, “Preservation of homologies prime homotopic type of normal functors”, AN USSR Preprint, Inst. Mat., No. 54, 1–28 (1988).

  67. 67.

    L. P. Plakhta, “Preservation of manifolds by functors of finite degree”, Int. Prikl. Probl. Mekh. Mat. AN SSSR Preprint, No. 5, 1–16 (1988).

  68. 68.

    V. I. Ponomarev, “Absoluteness of spaces and their exponents”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 2, 59–62 (1987).

  69. 69.

    V. I. Ponomarev and V. V. Tkachuk, “A countable characterX inβX compared with a countable character of the diagonal ofX×X”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 16–19 (1988).

  70. 70.

    V. V. Popov, “The topology of spaces of closed subsets”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 65–70 (1975).

  71. 71.

    V. V. Popov, “A space of closed subsets”, Dokl. AN SSSR,229, No. 5, 1051–1054 (1976).

  72. 72.

    V. V. Popov, “Exponents, Σ-products, andk-spaces”, in Topological Spaces and Their Mappings [in Russian], Riga (1979), pp. 107–118.

  73. 73.

    V. V. Popov, “Metrizability and spaces of closed subsets”, Usp. Mat. Nauk,35, No. 3, 209–213 (1980).

  74. 74.

    V. V. Popov, “Normality of the exponent in Ochan topologies”, Mat. Zametki,32, No. 3, 375–384 (1982).

  75. 75.

    V. V. Popov, “Exponents of Σ-products of topological spaces”, in: Topology and Set Theory [in Russian], Izhevsk (1982), pp. 20–25.

  76. 76.

    V. V. Popov, “Normality of exponents in topogies of Ochanov type. II”, Lit. Mat. Sb.,23, No. 4, 32–39 (1984).

  77. 77.

    V. V. Popov, “The structure of exponents of discrete spaces”, Mat. Zametki,35, No. 5, 757–767 (1984).

  78. 78.

    V. V. Popov, “Exponents in Ochanov Topologies andk-spaces”, in: Cardinal Invariants and Mappings of Topological Spaces [in Russian], Izhevsk (1984), pp. 19–22.

  79. 79.

    V. V. Popov, “Spaces of bicompact subsets andk-spaces”, in: General Topology. Function Spaces and Dimensionality [in Russian], Moscow State Univ. (1985), pp. 121–130.

  80. 80.

    G. O. Praninskas, “Countable compactness and pseudocompactness of exponents in Ochanov type topopologies”, Lit. Mat. Sb.,27, No. 2, 344–347 (1985).

  81. 81.

    I. E. Prokhorov, “Hypermappings of continua”, Mat. Zametki,42, No. 4, 572–580 (1987).

  82. 82.

    A. G. Savchenko, “The properties of the mapping exp n cf”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 19–25 (1985).

  83. 83.

    A. G. Savchenko, “The functor exp n c, absolute retracts, and Hilbert spaces”, Mat. Zametki,38, No. 6, 875–887 (1985).

  84. 84.

    A. G. Savchenko, “Functors of finite degree: criteria for isomorphism of spower functors and bicompacta that are continuous images ofI τ andD τ”, VINITI report No. 7888.

  85. 85.

    A. G. Savchenko, “Some covariant functors and dimensionality”, in: General Topology. Mappings of Topological Spaces [in Russian], Moscow State Univ. (1986), pp. 104–121.

  86. 86.

    A. G. Savchenko, “Covariant functors of finite degree, dimension and compacta of full dimensionality”, Usp. Mat. Nauk,41, No. 4, 221–222 (1986).

  87. 87.

    A. G. Savchenko, “On bicompacta of the formF(X) that are continuous images ofI τ andD τ”, Vestn. Mosk. Gos. Univ., Mat. Mekh, No. 3, 3–5 (1988).

  88. 88.

    A. G. Savchenko, “Criteria for isomorphism of functors of finite degree and power functors”, Vestn. Mosk. Gos. Univ., Ser. 1, No. 3, 18–21 (1989).

  89. 89.

    S. O. Sirota, “Spectral representation of spaces of closed subsets of bicompacta”, Dokl. AN SSSR,181, No. 5, 1169–1172 (1968).

  90. 90.

    M. V. Smurov, “On topological inhomogeneity of spaces of type expI τ, Dokl. AN SSSR,255, No. 3, 526–531 (1989).

  91. 91.

    M. V. Smirov, “Homeomorphisms of spaces of probability measure for uncountable powers of compacta”, Usp. Mat. Nauk,38, No. 3, 187–188 (1983).

  92. 92.

    U. Tashmetov, “On connectivity of hyperspaces”, Dokl. Akad. Nauk SSSR,215, No. 2, 286–288 (1974).

  93. 93.

    U. Tashmetov, “Connectivity and local connectivity of certain hyperspaces”, Sib. Mat. Zh.,15, No. 5, 1115–1130 (1974).

  94. 94.

    Tiraspol'skii, Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1985).

  95. 95.

    V. V. Fedorchuk, “Probability measures and absolute retracts”, Dokl. Akad. Nauk SSSR,255, No. 6, 1329–1333 (1980).

  96. 96.

    V. V. Fedorchuk, “Covariant functors in catgories of compacta, absolute retracts, andQ-manifolds”, Usp. Mat. Nauk,36, No. 3, 177–190 (1981).

  97. 97.

    V. V. Fedorchuk, “Exponents of Peano continua-the layer variant”, Dokl. Akad. Nauk SSSR,262, No. 1, 41–44 (1982).

  98. 98.

    V. V. Fedorchuk, “On open mappings”, Usp. Mat. Nauk,37, No. 4, 187–188 (1982).

  99. 99.

    V. V. Fedorchuk, “Monotonic open mappings”, Publ. Inst. Math.34, 61–64 (1983).

  100. 100.

    V. V. Fedorchuk, “Some geometric properties of covariant functors”, Usp. Mat. Nauk,39, No. 5, 169–208 (1984).

  101. 101.

    V. V. Fedorchuk, “Trivial stratification of spaces of probability measure”, Mat. Sb.129, No. 4, 473–493 (1986).

  102. 102.

    V. V. Fedorchuk, “On characterization ofn-soft mappings”, Dokl. Akad. Nauk SSSR,288, No. 2, 313–316 (1986).

  103. 103.

    V. V. Fedorchuk, “Soft maps, set-valued retractions, and functors”, Usp. Mat. Nauk,41, No. 6, 12159 (1986).

  104. 104.

    V. V. Fedorchuk, “A factorization lemma for open mappings of compacta”, Mat. Zametki,42, No. 1, 101–114 (1987).

  105. 105.

    V. V. Fedorchuk, “Set-valued retractions and characterization ofn-soft mappings”, Tr. Mosk. Mat. O-va,51, 169–207 (1988).

  106. 106.

    V. V. Fedorchuk, “Stratification of spaces of probability measure and the geometry of infinite iterations of certain monadic functors”, Dokl. Akad. Nauk SSSR,301, No. 1, 41–45 (1988).

  107. 107.

    V. V. Fedorchuk and V. V. Filippov, General Topology. Basic Constructions [in Russian], Moscow State Univ. (1988).

  108. 108.

    V. V. Filippov, “The dimension of products of topological spaces”, Fund. Math.,106, No. 3, 181–212 (1980).

  109. 109.

    N. G. Khadzhiivanov, “On products of continua”, Dokl. Bulg. Akad. Nauk.,31, No. 10, 1241–1244 (1978).

  110. 110.

    N. G. Khadzhiivanov, “On the degree of connectivity of products of continua”, Serdika. Bulg. Mat. Spicanie,5, No. 4, 380–383 (1979).

  111. 111.

    T. Chapman, Lectures onQ-Manifolds [Russian translation], Mir, Moscow (1981).

  112. 112.

    A. Ch. Chigogidze, “Continuation of normal functors”, Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 6, 23–26 (1984).

  113. 113.

    A. Ch. Chigogidze and B. A. Pasynkov, “The dimensionality of products of completely regular topological spaces”, Soobshch. Akad Nauk Gruz. SSR,90, No. 3, 553–556 (1978).

  114. 114.

    L. B. Shapiro, “The space of closed subsets ofD α2 is not a dyadic bicompactum”, Dokl. Akad. Nauk SSSR,228, No. 6, 1302–1305 (1976).

  115. 115.

    L. B. Shapiro, “Spaces of closed subsets of bicompacta”, Dokl. Akad. Nauk SSSR,231, No. 2, 295–298 (1976).

  116. 116.

    L. B. Shapiro, “Spaces of probability measure”, Usp. Mat. Nauk,34, No. 2, 2219–220 (1979).

  117. 117.

    L. B. Shapiro, “Spaces of absolute dyadic bicompacta”, Dokl. Akad. Nauk SSSR,293, No. 5, 1077–1081 (1987).

  118. 118.

    L. B. Shapiro, “The category characteristic of a hyperspace”, Usp. Mat. Nauk,43, No. 4, 227–228 (1988).

  119. 119.

    E. V. Shchepin, “Real-valued functions and canonical sets in Tychonoff products and topological groups”, Usp. Mat. Nauk,31, No. 6, 17–27 (1976).

  120. 120.

    E. V. Shchepin, “Topological limits of spaces of uncountable inverse spectra”, Usp. Mat. Nauk,31, No. 5, 191–226 (1976).

  121. 121.

    E. V. Shchepin, “Functors and uncountable powers of compacta”, Usp. Mat. Nauk,36, No. 3, 3–62 (1981).

  122. 122.

    E. V. Shchepin, “The method of inverse spectra in the topology of bicompacta”, Mat. Zametki,31, No. 2, 299–315 (1981).

  123. 123.

    F. Albrecht, “Asupra spatiului multimilor închise al unui spatiu compact”, Commun. Acad. R. P. Române, 3, Nos. 1–2, 13–17 (1953).

  124. 124.

    R. D. Anderson and R. H. Bing, “A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines”, Bull. Am. Math. Soc.,74, No. 5, 771–792 (1968).

  125. 125.

    Y. Aoki, “Orthocompactness of inverse limits and products”, Tsukuba J. Math.,4, No. 2, 241–255 (1980).

  126. 126.

    G. Artico and R. Moresco, “Notes on topologies and uniformities of hyperspaces”, Rend. Sem. Univ. Padova,63, 51–60 (1980).

  127. 127.

    P. C. Baayen, “Maximal linked systems in topology”, in: Gen. Topol. and Relat. Modern Anal. and Algebra IV. Pro. 4th Prague Topol. Symp., Part B, Prague (1976), pp. 28–36.

  128. 128.

    R. W. Bagley and D. D. Weddington, “Product ofk'-spaces”, Proc. Am. Math. Soc.,22, No. 2, 292–394 (1969).

  129. 129.

    C. Bandt, “On the metric structure of hyperspaces with Hausdorff metric”, Math. Nachr.,129, 175–183 (1986).

  130. 130.

    M. Barr and C. Wells, Toposes, Triples, and Theories, Springer, New York (1985).

  131. 131.

    M. Bell, “Hyperspaces of finite subsets”, Math. Centre Tracts. Amsterdam, No. 115, 15–28 (1979).

  132. 132.

    M. Bell, “Supercompactness of compactifications and hyperspaces”, Trans. Am. Math. Soc. (as in Russian original).

  133. 133.

    M. Bell, J. Ginsburg, and S. Todokević, “Countable spread of expY and λY”, Topol. Appl.,14, No. 1, 1–12 (1982).

  134. 134.

    C. R. Borges, “Normality of hyperspaces”, Math. Jpn.,25, No. 4, 507–510 (1980).

  135. 135.

    C. Borges, “Retraction properties of hyperspaces”, Math. Jpn.,30, No. 4, 551–557 (1985).

  136. 136.

    C. Borges, “Hyperconnectivity of hyperspaces”, Math. Jpn.,30, No. 5, 757–761 (1985).

  137. 137.

    C. Borges, “LEC's, local mixers, topological groups and special products”, J. Austral. Math. Soc.,44, No. 2, 252–258 (1988).

  138. 138.

    J. Borsik and J. Doboš, “On a product of metric spaces”, Math. Slovaca (CSSR),31, No. 2, 193–205 (1981).

  139. 139.

    R. Bott, “On the third symmetric potency ofS 1”, Fundamen. Math.,39, No. 3, 264–268 (1952).

  140. 140.

    R. Bott, “On symmetric products and Steenrod squares”, Ann. Math., Ser. 2,57, No. 3, 579–590 (1953).

  141. 141.

    L. Boxer, “Hyperspaces where convergence to a calm limit implies eventual shape equivalence”, Fund. Math.,115, No. 3, 213–222 (1983).

  142. 142.

    M. A. Brown, “A note on cartesian produts”, Am. J. Math.,91, No. 1, 32–36 (1969).

  143. 143.

    R. Cauty, “Produits symétriques de rétractes absolus de voisinage”, C. R. Acad. Sci. Paris,276, No. 5, 359–361 (1973).

  144. 144.

    J. J. Charatonik, “Contractibility and continuous selections”, Fund. Math.108, No. 2, 109–118 (1980).

  145. 145.

    W. J. Charatonik, “Hyperspaces and the property of Kelley”, Bull. Acad. Pol. Sci. Sér. Sci. Math.,30, Nos. 9–10, 457–459 (1982).

  146. 146.

    W. J. Charatonik, “On the property of Kelley in hyperspaces”, Lect. Notes Math.,1060, 7–10 (1984).

  147. 147.

    W. J. Charatonik, “Homogeneity is not a Whitney property”, Proc. Am. Math. Soc.,92, No. 2, 311–312 (1984).

  148. 148.

    W. J. Charatonik, “A continuumX which has no confluent Whitney map for 2X”, Proc. Am. Math. Soc.,92, No. 2, 313–314 (1984).

  149. 149.

    W. J. Charatonik, “Pointwise smooth dendroids have contractible hyperspaces”, Bull. Pol. Acad. Sci. Math.,33, Nos. 7–8, 409–412 (1985).

  150. 150.

    W. J. Charatonik, “A metric on hyperspaces defined by Whitney maps”, Proc. Am. Math. Soc.,94, No. 3, 535–538 (1985).

  151. 151.

    Z. Čerin and A. P. Sostak, “Fundamental and approximative uniformity on the hyperspace”, Glas. Math.,16, No. 2, 339–359 (1981).

  152. 152.

    A. Chigogidze, “On Baire isomorphisms of non-metrizable compacta”, Comment. Math. Univ. Carol.,26, No. 4, 811–820 (1985).

  153. 153.

    A. Chigogidze and V. Valov, “Set-valued maps andAE(0)-spaces”, Dokl. Bolg. Akad. Nauk,41, No. 4, 13–14 (1988).

  154. 154.

    M. Čoban, “Note sur topologie exponentielle”, Fund. Math.,71, No. 1, 27–41 (1971).

  155. 155.

    W. W. Comfort, “A nonpseudocompact product space whose finite subproducts are pseudocompact”, Math. Ann.,170, No. 1, 41–44 (1967).

  156. 156.

    W. W. Comfort and J. van Mill, “On the product of homogeneous spaces”, Topol. Appl.,21, No. 3, 297–308 (1985).

  157. 157.

    A Csazar, “Normality in products”, in: Topology, 4th Cooloq., Budapest, 1978, Vol. 1, Budapest (1980).

  158. 158.

    D. W. Curtis, “The hyperspace of subcontinua of Peano continuum”, Lect. Notes Moth.,378, 108–118 (1974).

  159. 159.

    D. W. Curtis, “Growth hyperspaces of Peano continua”, Trans. Am. Math. Soc.,238, 271–283 (1978).

  160. 160.

    D. W. Curtis, “Hyperspaces homeomorphic to Hilbert space”, Proc. Am. Math. Soc.,75, No. 1, 126–130 (1979).

  161. 161.

    D. W. Curtis, “Hyperspaces of Peano continua”, Math. Centre Tracts. Amsterdam, No. 115, 51–65 (1979).

  162. 162.

    D. W. Curtis, “Hyperspaces of noncompact metric spaces”, Compos. Math.,40, No. 2, 139–152 (1980).

  163. 163.

    D. W. Curtis, “Application of a selection theorem to hyperspaces contractibility”, Can. J. Math.,37, No. 4, 747–759 (1985).

  164. 164.

    D. W. Curtis M. Michael, “Boundary sets for growth hyperspaces”, Top. Appl.,25, No. 3, 269–283 (1987).

  165. 165.

    D. W. Curtis and Nguyen To Nhu, “Hyperspaces of finite subsets which are homeomorphic to ℵ0-dimensional linear metric spaces”, Top. Appl.,19, No. 3, 251–260 (1985).

  166. 166.

    D. W. Curtis, J. Quinn, and R. M. Schori, “The hyperspace of compact convex subsets of a polyhedral 2-cell”, Houston J. Math.,3, No. 1, 7–15 (1977).

  167. 167.

    D. W. Curtis and R. M. Schori, “2X andC(X) are homeomorphic to the Hilbert cube”, Bull. Am. Math. Soc.,80, No. 5, 927–931 (1974).

  168. 168.

    D. W. Curtis and R. M. Schori, “Hyperspaces which characterize simple homotopy type”, Gen. Topol. Appl.,6, No. 2, 153–165 (1976).

  169. 169.

    D. W. Curtis and R. M. Schori, “Hyperspaces of polyhedra are Hilbert cubes”, Fund. Math.,99, No. 3, 189–197 (1978).

  170. 170.

    D. W. Curtis and R. M. Schori, “Hyperspaces of Peano continua are Hilbert cubes”, Fund. Math.,101, No. 1, 19–38 (1978).

  171. 171.

    J. M. Day and K. Kuratowski, “On the nonexistence of a continuous selector for arcs lying in the plane”, Indag. Math.,28, No. 2, 131–132 (1966).

  172. 172.

    P. Diamont and P. Kloeden, “A note on compact sets in spaces of subsets”, Bull. Austral. Math. Soc.,38, No. 3, 393–395 (1988).

  173. 173.

    J. J. Dijkstra, “A rigid space whose square is the Hilbert space”, Proc. Am. Math. Soc.,93, No. 1, 118–120 (1985).

  174. 174.

    S. Z. Ditor and L. Q. Eifler, “Some open mapping theorems for measures”, Trans. Am. Math. Soc.,164, 278–293 (1972).

  175. 175.

    S. Z. Ditor and R. Haydon, “On absolute retracts,P(S), and complemented subspaces ofC(Dω)”, Stud. Math.,56, No. 3, 243–251 (1976).

  176. 176.

    A. Dold, “Homology of symmetric products and other functors of complexes”, Ann. Math.,68, No. 1, 54–80 (1958).

  177. 177.

    A. Dold, “Decomposition theorem forS(n)-complexes”, Ann. Math.,75, No. 1, 8–16 (1962).

  178. 178.

    A. Dold and D. Puppe, “Homologie nicht-additiver Funktoren”, Andwendungen. Ann. Inst. Fourier,11, 301–312 (1961).

  179. 179.

    A. Dold and R. Thom, “Quasifaserungen und unendliche symmetrische Produkten”, Ann. Math. Ser 2,67, No. 2, 239–281 (1958).

  180. 180.

    C. Dorsett, “Local connectedness, connectedness im kleinen, and other properties of hyperspaces ofR 0 spaces”, Mat. Vestn.,3, No. 2, 113–132 (1979).

  181. 181.

    C. Dorsett, “Connectedness in hyperspaces”, J. Natur. Sci. Math.,22, No. 1, 61–70 (1982).

  182. 182.

    C. Dorsett, “Local connectedness in hyperspaces”, Rend. Circ. Mat. Palermo,31, No. 1, 137–144 (1982).

  183. 183.

    C. Dorsett, “Product spaces and semi-separation axioms”, Period. Math. Hung.,13, No. 1, 39–45 (1982).

  184. 184.

    C. Dorsett, “Connectivity properties in hyperspaces and product spaces”, Fund. Math.,121, No. 3, 189–197 (1984).

  185. 185.

    E. K. van Douwen and J. T. Goodykoontz, Jr., “Aposyndesis in hyperspaces and Čech-Stone remainders”, In: Gen. Topol. and Mod. Anal. Proc. Conf., Riverside, Calif. May 28–31, 1980, New York (1981), pp. 43–52.

  186. 186.

    M. M. Drešević, “On inverse limit of functions spaces”, Publ. Inst. Math.,15, 47–54 (1973).

  187. 187.

    C. Eberhart, “Continua with locally connected Whitney continua”, Houston J. Math.,4, No. 2, 165–173 (1978).

  188. 188.

    C. Eberhart and S. B. Nadler, Jr., “The dimension of certain hyperspaces”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,19, No. 11, 1027–1034 (1971).

  189. 189.

    C. Eberhart and S. B. Nadler, Jr., “Hyperspaces of cones and fans”, Proc. Am. Math. Soc.,77, No. 2, 279–288 (1979).

  190. 190.

    C. Eberhart and S. B. Nadler, Jr., “Irreducible Whitney levels”, Houston J. Math.,6, No. 3, 355–363 (1980).

  191. 191.

    C. Eberhart, S. B. Nadler, and W. O. Nowell, Jr., “Spaces of order arcs in hyperspaces”, Fund. Math.,112, No. 2, 11–120 (1981).

  192. 192.

    Eda Katsuya, “A note on the hereditary properties in the product space”, Tsukuba J. Math.,4, No. 2, 157–159 (1980).

  193. 193.

    S. Eilenberg and J. Moore, “Adjoint functors and triples”, Ill. J. Math.,9, No. 3, 381–398 (1965).

  194. 194.

    F. van Engelen, “Countable products of zero-dimensional absoluteF αδ -spaces”, Proc. Koninkl. Nederl. Akad. Wet.,87, No. 4, 391–399 (1984).

  195. 195.

    V. V. Fedorchuk, “On hypermaps which are trivial bundles”, Lect. Notes. Math.,1060, 26–36 (1984).

  196. 196.

    V. V. Fedorchuk, “Absolute retracts and some functors”, in: Gen. Topol. and Relat. Mod. Anal, and Algebra 5, Berlin (1983), pp. 174–182.

  197. 197.

    B. Fisher, “A reformulation of the Hausdorff metric”, Rostock Math. Kolloq., No. 24, 71–76 (1983).

  198. 198.

    K. Fort, Jr. and J. Segal, “Minimal representations of the hyperspace of a continuum”, Duke Math. J.,32, No. 1, 129–137 (1965).

  199. 199.

    S. Francaviglia, A. Lechnicki, and S. Levi, “Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions”, J. Math. Anal. Appl.,112, No. 2, 347–370 (1985).

  200. 200.

    L. M. Friedler, R. F. Dickman, Jr., R. L. Krystock, “Hyperspaces of H-closed spaces”, Can. J. Math.,32, No. 5, 1072–1079 (1980).

  201. 201.

    Z. Frolik, “Sums of ultrafilters”, Bull. Am. Math. Soc.,73, No. 1, 87–91 (1967).

  202. 202.

    T. Ganea, “Contractibilitatea producelor simetrice”, Stud. Cerc. Mat,4, Nos. 1–2, 23–28 (1953).

  203. 203.

    T. Ganea, “Symmetrische Potenzen topologischer Räume”, Math. Nachr.,11, Nos. 4–5, 305–316 (1954).

  204. 204.

    T. Ganea, “Produse semitrice di spatii topologice”, Commun. Acad. R. P. Romîne,4, Nos. 11–12, 561–563 (1954).

  205. 205.

    R. J. Gazik, “Uniform convergence for a hyperspace”, Proc. Am. Math. Soc.,42, No. 1, 302–306 (1974).

  206. 206.

    J. Ginsburg, “A note onG δ -Closure and the realcompactness of 2X”, Gen. Top. Appl.,6, No. 3, 319–326 (1976).

  207. 207.

    J. T. Goodykoontz, Jr., “Nonlocally connected continuumX such thatC(X) is a retract of 2X”, Proc. Am. Math. Soc.,91, No. 2, 312–322 (1984).

  208. 208.

    J. T. Goodykoontz, Jr., “Aposyndetic properties of hyperspaces”, Pac. J. Math.,47, No.1, 91–98 (1973).

  209. 209.

    J. T. Goodykoontz, Jr., “Connectedness im kleinen and local connectedness in 2X andC(X)”, Pac. J. Math.,53, No. 2, 387–398 (1974).

  210. 210.

    J. T. Goodykoontz, Jr., “Some functions on hyperspaces of hereditarily unicoherent continua”, Fund. Math.,95, No. 1, 1–10 (1977).

  211. 211.

    J. T. Goodykoontz, Jr., “C(X) is not necessarily a retract of 2X”, Proc. Am. Math. Soc.,67, No. 1, 177–178 (1977).

  212. 212.

    J. T. Goodykoontz, Jr., “Hyperspaces of arc-smooth continua”, Houston J. Math.,7, No. 1, 33–41 (1981).

  213. 213.

    J. T. Goodykoontz, Jr., “Arc-smootheness in hyperspaces”, Topol. Appl.,15, No. 2, 131–150 (1983).

  214. 214.

    J. T. Goodykoontz, Jr., “Some retraction and deformation retraction on 2X andC(X)”, Topol. Appl.,51, No. 2, 121–133 (1985).

  215. 215.

    J. T. Goodykoontz, Jr., “Geometric models of Whitney levels”, Houston J. Math.,11, No. 1, 75–89 (1985).

  216. 216.

    J. T. Goodykoontz, Jr. and S. B. Nadler, Jr., “Whitney levels in hyperspaces of certain Peano continua”, Trans. Am. Math. Soc.,274, No. 2, 671–694 (1982).

  217. 217.

    N. K. Gray, “Unstable points in the hyperspace of connected subsets”, Pac. J. Math.,23, No. 3, 515–520 (1967).

  218. 218.

    N. K. Gray, “On the conjecture 2XI ω”, Fund. Math.,66, No. 1, 45–52 (1969).

  219. 219.

    J. Grispolakis, S. B. Nadler, Jr., and E. D. Tymchatyn, “Some properties of hyperspaces with applications to continua theory”, Can. J. Math.,31, No. 1, 197–210 (1979).

  220. 220.

    J. Grispolakis and E. D. Tymchatyn, “Embedding smooth dendroids in hyperspaces”, Can. J. Math.,31, No. 1, 130–138 (1979).

  221. 221.

    J. Grispolakis and E. D. Tymchatyn, “Irreducible continua with degenerate end-tranches and arcwise accessibility in hyperspaces”, Fund. Math.,110, No. 2, 117–130 (1980).

  222. 222.

    J. Grispolakis and E. D. Tymchatyn, “On a characterization ofW-sets and the dimension of hyperspaces”, Proc. Am. Math. Soc.,100, No. 3, 557–563 (1987).

  223. 223.

    J. de Groot, “On some problems of Borsuk concerning a hyperspace of compact sets”, Proc. Koninkl. Akad. Wet.,29, No. 1, 95–103 (1956).

  224. 224.

    J. de Groot, G. A. Gensen, and A. Verbeek, “Superextension”, in: Proc. Int. Symp. Topol. and Its Appl. Herceg-Novi, 1968, Belgrad (1969), pp. 176–178.

  225. 225.

    C. L. Hagopian, “Products of hereditarily indecomposable continua are λ-connected”, Fund. Math.,119, No. 3, 217–226 (1983).

  226. 226.

    J. M. Harvey, “Categorical characterization of uniform hyperspaces”, Math. Proc. Cambridge Phil. Soc., No. 2, 229–233 (1983).

  227. 227.

    R. Haydon, “On problems of Pelczynski: Milutin spaces, Dugundji spaces, andAE(dim 0)”, Stud. Math.,52, No. 1, 23–31 (1974).

  228. 228.

    S. H. Hechler, “Exponents of someN-compact spaces”, Isr. J. Math.,15, No. 4, 384–395 (1973).

  229. 229.

    R. E. Heisey and J. E. West, “Orbit spaces of the hyperspace of a graph which are Hilbert cubes”, Colloq. Math.,56, No. 1, 59–69 (1988).

  230. 230.

    D. W. Henderson, “A simplicial complex whose product with any ANR is a simplicial complex”, Gen. Topol. Appl.,3, No. 1, 81–83 (1973).

  231. 231.

    D. W. Henderson, “On the hyperspace of subcontinua of an arc-like continuum”, Proc. Am. Math. Soc.,27, No. 2, 416–417 (1971).

  232. 232.

    H. Herrlich, “Categorical topology”, in: Gen. Topol. and Relat. Mod. Anal, and Algebra. 5, Berlin (1983), pp. 279–383.

  233. 233.

    A. G. Hitchcock, “Uniform hyperspaces and Hausdorff completions”, J. London Math. Soc.,12, No. 4, 505–512 (1976).

  234. 234.

    A. Hohti, “On supercomplete spaces. III”, Proc. Am. Math. Soc.,97, No. 2, 339–342 (1986).

  235. 235.

    M. Husek and J. Pelant, “Extensions and restrictions in products of metric spaces”, Top. Appl.,25, No. 3, 245–252 (1987).

  236. 236.

    A. M. Illanes, “Multicoherence of symmetric products”, An. Inst. Math. UNAM,22, 11–24 (1985).

  237. 237.

    A. M. Illanes, “Monotone and open Whitney maps”, Proc. Am. Math. Soc.,98, No. 3, 516–518 (1986).

  238. 238.

    A. M. Illanes, “Irreducible Whitney levels with respect to finite and countable subsets”, An. Inst. Mat. UNAM,26, 59–64 (1986).

  239. 239.

    A. M. Illanes, “A continuumX which is a retract ofC(X) but not of 2X”, Proc. Am. Math. Soc.,100, No. 1, 199–200 (1987).

  240. 240.

    A. M. Illanes, “Cells and cubes in hyperspaces”, Fund. Math.,130, No. 1, 57–65 (1988).

  241. 241.

    T. Ishii, “A product formula for the Tychonoff functor”, in: Topology. 4th Colloq. Budapest, 1978, Amsterdam (1980), pp. 659–661.

  242. 242.

    J. W. Jaworowski, “Symmetric products of ANR's”, Math. Ann.,192, No. 3, 173–176 (1971).

  243. 243.

    J. W. Jaworowski, “Symmetric product of ANR's associated with a permutation group”, Bull. Acad. Pol. Sci., Ser. Math.,20, No. 8, 649–651 (1972).

  244. 244.

    H. Kato, “Concerning hyperspaces of certain Peano continua and strong regularity of Whitney maps”, Pac. J. Math.,119, No. 1, 159–167 (1985).

  245. 245.

    H. Kato, “Shape properties of Whitney maps for hyperspaces”, Trans. Am. Math. Soc.,297, No. 2, 529–546 (1986).

  246. 246.

    H. Kato, “The dimension of hyperspaces of certain 2-dimensional continua”, Topol. Appl.,28, No. 1, 83–87 (1988).

  247. 247.

    H. Kato, “On admissible Whitney maps”, Colloq. Math.,56, No. 2, 299–309 (1988).

  248. 248.

    H. Kato, “Shape equivalence of Whitney continua of curves”, Can. J. Math.,40, No. 1, 217–227 (1988).

  249. 249.

    H. Kato, “Whitney continua of graphs admit all homotopy types of compact connected ANR's”, Fund. Math.,129, No. 3, 161–166 (1988).

  250. 250.

    H. Kato, “Movability and strong Whitney-reversible properties”, Topol. Appl.,31, No. 2, 125–132 (1989).

  251. 251.

    J. Keesling, “Normality and properties related to compactness in hyperspaces”, Proc. Am. Math. Soc.,24, No. 4, 760–766 (1970).

  252. 252.

    J. Kennedy, “Compactifying the space of homeomorphisms”, Colloq. Math.,56, No. 1, 41–58 (1988).

  253. 253.

    V. Klee, “Some topological properties of convex sets”, Trans. Am. Math. Soc.,78, No. 1, 30–45 (1955).

  254. 254.

    Y. Kodama, S. Spieź, and T. Watanabe, “On shape of hyperspaces”, Fund. Math.,100, No. 1, 59–67 (1978).

  255. 255.

    Shu-Chung Koo, “Recursive properties of transformation groups in hyperspaces”, Math. Syst. Theory,9, No. 1, 75–82 (1975).

  256. 256.

    J. Krasinkiewics, “Certain properties of hyperspaces”, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,21, No. 8, 705–710 (1973).

  257. 257.

    J. Krasinkiewics, “On Hyperspaces of snake-like and circle-like continua”, Fund. Math.,83, No. 2, 155–164 (1973).

  258. 258.

    J. Krasinkiewics, “On the hyperspaces of hereditarily indecomposable continua”, Fund. Math.,84, No. 3, 175–186 (1974).

  259. 259.

    J. Krasinkiewics, “On the hyperspaces of certain plane continua”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,23, No. 9, 981–983 (1975).

  260. 260.

    J. Krasinkiewics and S. B. Nadler, Jr., “Whitney properties”, Fund. Math.,98, No. 2, 165–180 (1978).

  261. 261.

    N. Kroonenber, “Pseudointeriors of hyperspaces”, Compos. Math.,32, No. 2, 113–131 (1976).

  262. 262.

    A. Y. W. Lau, “A note on monotone maps and hyperspaces”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,24, No. 2, 121–123 (1976).

  263. 263.

    A. Y. W. Lau and C. H. Voas, “Connections of the hyperspaces of closed connected subsets”, Rocz. Pol. Tow. Mat., Ser. 1,20, No. 2, 393–396 (1978).

  264. 264.

    J. D. Lawson, “Applications of topological algebra to hyperspace problems”, in: Topology, New York-Basel (1976), pp. 201–206.

  265. 265.

    A. Lechnicki and S. Levi, “Wijsman convergence in the hyperspaces of metric space”, Rend. Circ. Math. Palermo,34, Suppl, No. 8, 297–299 (1986).

  266. 266.

    A. Lechnicki and S. Levi, “Wijsman convergence in the hyperspace of a metric space”, Boll. Unione Mat Ital.,1, No. 2, 439–451 (1987).

  267. 267.

    S. D. Liao, “On the topology of cyclic products of spheres”, Trans. Am. Math. Soc.,77, 520–551 (1954).

  268. 268.

    I. Lončar, “Relative continuity of the functorβ”, Czechosl. Math. J.,37, No. 4, 517–521 (1987).

  269. 269.

    E. Lowen-Colebunders, “On the uniformization of the hyperspace of closed convergence”, Math. Nachr.,105, 35–44 (1982).

  270. 270.

    E. Lowen-Colebunders, “On the convergence of closed and compact sets”, Pac. J. Math.,108, No. 1, 133–140 (1983).

  271. 271.

    M. Lynch, “Whitney properties for 1-dimensional continua”, Acad. Bull. Pol. Sci. Sér. Sci. Math.,35, Nos. 7–8, 473–478 (1987).

  272. 272.

    M. Lynch, “Whitney levels inC p (X) are AR's”, Proc. Am. Math. Soc.,97, No. 4, 748–750 (1986).

  273. 273.

    T. Mackowiak, “Contractable and nonselectable dendroids”, Bull. Acad. Pol. Sci. Sér. Sci. Math.,33, Nos. 5–6, 321–324 (1985).

  274. 274.

    T. Mackowiak, “Continuous selections forC(X)”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,26, No. 6, 547–551 (1978).

  275. 275.

    B. L. McAllister, “Hyperspaces and multi-functions. The first half century (1900–1950)”, Nieuw. Arch. Wisk.,26, No. 2, 309–329 (1978).

  276. 276.

    M. M. Marjanović, “Exponentially complete spaces I”, Glass. Math.,6, No. 1, 143–147 (1971).

  277. 277.

    M. M. Marjanović, “Exponentially complete spaces”, Publ. Inst. Math., No. 13, 77–79 (1972).

  278. 278.

    M. M. Marjanović, “Exponentially complete space. III.”, Publ. Inst. Math., No. 14, 97–109 (1972).

  279. 279.

    M. M. Marjanović, “Spaces homeomorphic to their hyperspaces”, In: Proc. Intern. Symp. Topol. and Appl., Budva, Belgrade (1973), pp. 167–169.

  280. 280.

    M. M. Marjanović, “Exponentially complete spaces. IV”, Publ. Inst. Math., No. 16, 101–109 (1973).

  281. 281.

    M. M. Marjanović, “Some questions related to hyperspaces”, In: Gen. Topol. and Relat. Modern Anal, and Algebra IV. Proc. 4th Prague Topol. Symp. 1976., Part B, Prague (1977), pp. 276–278.

  282. 282.

    M. M. Marjanović, “SpacesX ω for zero-dimensionalX”, Bull. Cl. Sci. Math, et Natur. Sci. Math./ Acad. Serbe Sci. et Arts,47, No. 16, 23–26 (1988).

  283. 283.

    M. M. Marjanović and S. T. Vrečica, “Another hyperspace representation of the Hilbert cube”, Bull. Acad. Serbe. Sci. et Arts,88, No. 14, 11–19 (1985).

  284. 284.

    M. M. Marjanović, S. T. Vrečica, and R. T. Zivaljević, “Some properties of hyperspaces of higher rank”, Bull. Acad. Serbe Sci. et Arts,84, No. 13, 103–117 (1984).

  285. 285.

    M. M. Marjanović and A. R. Cucemilović, “Two nonhomeomorphic countable spaces having homeomorphic squares”, Comment. Math. Univ. Carol.,26, No. 3, 479–588 (1985).

  286. 286.

    S. Masih, “Fixed points of symmetric product mappings of polyhedra and metric absolute neighborhood retracts”, Fund. Math.,80, 149–156 (1973).

  287. 287.

    C. N. Maxwell, “Fixed points of symmetric products mappings”, Proc. Am. Math. Soc.,8, No. 4, 808–815 (1957).

  288. 288.

    E. Michael, “On a map from a function space to a hyperspace”, Math. Ann.,162, No. 1, 87–88 (1965).

  289. 289.

    E. Michael, “Paracompactness and the Lindelöf property in finite and countable cartesian products”, Compos. Math.,23, No. 2, 199–214 (1971).

  290. 290.

    M. Michael, “Some hyperspaces homeomorphic to separable Hilbert space”, In: Gen. Topol. and Mod. Anal. Proc. Conf. Riverside, Calif., May 28–31, 1980, New York (1981), pp. 291–294.

  291. 291.

    R. Milgram, “The homology of symmetric products”, Trans. Am. Math. Soc.,138, 251–265 (1969).

  292. 292.

    J. van Mill, Superextensions and Wallman Spaces, No. 75, Amsterdam (1977).

  293. 293.

    J. van Mill, “Recent results on superextensions”, In: Gen. Topol. and Relat. Modern. Anal, and Algebra IV., Proc. 4th Prague Topol. Symp., 1976, Part. B., Prague (1977), pp. 279–283.

  294. 294.

    J. van Mill, “A pseudo-interior of λ. I”, Compos. Math.,36, No. 1, 75–82 (1978).

  295. 295.

    J. van Mill, “The superextension of the closed unit interval is homeomorphic to the Hilbert cube”, Fund. Math.,103, No. 3, 151–175 (1979).

  296. 296.

    J. van Mill, “Superextensions of metrizable continua are Hilbert Cubes”, Fund. Math.,107, No. 3, 201–224 (1980).

  297. 297.

    J. van Mill, “A Peano continuum homeomorphic to its own square but not to its countable infinite product”, Proc. Am. Math. Soc.,80, No. 4, 703–705 (1980).

  298. 298.

    J. van Mill, “A rigid spaceX for whichX×X is homogeneous, and application of infinite-dimensional topology”, Proc. Amt. Math. Soc.,83, No. 3, 597–600 (1981).

  299. 299.

    J. van Mill and A. Schrijver, “Superextensions which are Hilbert cubes”, Period. Math. Hung.,10, No. 1, 15–24 (1979).

  300. 300.

    J. van Mill and M. van de Vel, “Path connectedness, contractibility, and LC-properties, of superextensions”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,26, No. 3, 261–269 (1978).

  301. 301.

    J. van Mill, “On syperextensions and hyperspaces”, Math. Centre Tracts. Amsterdam., No. 115, 169–180 (1979).

  302. 302.

    J. van Mill, “Subbases, convex sets, and hyperspaces”, Pac. J. Math.,92, No. 2, 389–402 (1981).

  303. 303.

    D. Milovančević, “Some relations between hyperspaces of nearly compact spaces”, Zb. Rad. Fil. Fak. Nišu. Ser. Mat.,1, 55–59 (1987).

  304. 304.

    A. K. Misra, “A note on arcs in hyperspaces”, Acta Math. Hung.,45, Nos. 3–4, 285–288 (1985).

  305. 305.

    T. Mizokami, “Cardinal functions on hyperspaces”, Colloq. Math.,41, No. 2, 201–205 (1979).

  306. 306.

    R. Molski, “On symmetric products”, Fund. Math.,44, 165–170 (1957).

  307. 307.

    P. Morales, “A note on the topology of C-convergence in hyperspaces”, Proc. Am. Math. Soc.,52, 469–470 (1975).

  308. 308.

    K. Morita, “Completion of hyperspaces of compact subsets and topological completion of open-closed maps”, Gen. Topol. Appl.,4, No. 3, 217–233 (1974).

  309. 309.

    K. Morita, “On the dimension of the product of topological spaces”, Tsukuba J. Math.,1, 1–6 (1977).

  310. 310.

    H. N. Morton, “Symmetric products of the circle”, Proc. Camb. Philos. Soc.,63, No. 2, 349–352 (1967).

  311. 311.

    M. Mršević, “On connectivity properties of hyperspaces ofR 0-spaces”, Mat. Vestn.,3, No. 4, 451–458 (1979).

  312. 312.

    S. B. Nadler, Jr., “Some problems concerning hyperspaces”, Lect. Notes Math.,375, 190–197 (1974).

  313. 313.

    S. B. Nadler, Jr., Some basic connectivity properties of Whitney map inverses inC(X)”, in: Stud. Topol., New York (1975), pp. 393–410.

  314. 314.

    S. B. Nadler, Jr., “Continua whose cone and hyperspace are homeomorphic”, Trans. Am. Math. Soc.,320, 321–345 (1977).

  315. 315.

    S. B. Nadler, Jr., “A characterization of locally connected continua by hyperspace retractions”, Proc. Am. Math. Soc.,67, No. 1, 167–176 (1977).

  316. 316.

    S. B. Nadler, Jr., Hyperspaces of Sets. A Text With Research Questions, Marcel Dekker, New York-Basel (1978).

  317. 317.

    S. B. Nadler, Jr., “Continua whose hyperspace is a product”, Fund. Math.,108, No. 1, 49–66 (1980).

  318. 318.

    S. B. Nadler, Jr., “Induced universal maps and some hyperspaces with the fixed point property”,100, No. 4, 749–754 (1987).

  319. 319.

    S. B. Nadler, Jr. and J. Quinn, “Continua whose hyperspace and suspension are homeomorphic”, Gen. Topol. Appl.,8, No. 2, 119–126 (1978).

  320. 320.

    S. B. Nadler, Jr., J. Quinn, and N. M. Stavrakas, “Hyperspaces of compact convex sets. II”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,25, No. 4, 381–385 (1977).

  321. 321.

    S. B. Nadler, Jr., J. Quinn, and N. M. Stavrakas, “Hyperspaces of compact convex sets. II”, Pac. J. Math.,83, No. 2, 441–462 (1977).

  322. 322.

    M. Nakaoka, “Cohomology of the three-fold symmetric products of spheres”, Pac. J. Math.,31, No. 10, 670–672 (1955).

  323. 323.

    G. NepomnjaščII, “A spectral characterization of absolute multivalued retracts”, In: Gen. Topol. and Relat. Mod. Anal, and Algebra. 5, Berlin (1983), pp. 507–510.

  324. 324.

    Nguyen To Nhu, “Investigating the ANR-property of metric spaces”, Fund. Math.,124, No. 3, 243–254 (1984).

  325. 325.

    T. Nishiura and Choon-Jai Rhee, “Cut point ofX and the hyperspace of subcontinuaC(X)”, Proc. Am. Math. Soc,82, No. 1, 143–154 (1981).

  326. 326.

    T. Nishiura and Choon-Jai Rhee, “Contractibility of the hyperspaces of subcontinua”, Houston J. Math.,8, No. 1, 119–127 (1982).

  327. 327.

    Shin-ichi Nitta, “A note on superextensions of product spaces”, Math. Jpn.,32, No. 1, 75–79 (1987).

  328. 328.

    H. Otta, “Realcompactness of hyperspaces and extensions of open-closed maps”, Topol. Appl.,17, No. 3, 215–274 (1984).

  329. 329.

    S. Oka, “Tychonoff functor and product spaces”, Proc. Jpn. Acad.,54, No. 4, 97–100 (1978).

  330. 330.

    A. Okuyama, “Note on hyperspaces consisting of compact sets”, Math. Jpn.,24, No. 3, 301–305 (1979).

  331. 331.

    A. Okuyama, “Some relationships between function spaces and hyperspaces”, In: Gen. Topol. and Relat. Mod. Anal, and Algebra. 5, Berlin (1983), pp. 507–535.

  332. 332.

    J. Oledski, “On symmetric products”, Fund. Math.,131, No. 3, 185–190 (1988).

  333. 333.

    A. Pelczynski, “A remark on space 2X for zero-dimensionalX”, Bull Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,13, No. 2, 85–89 (1965).

  334. 334.

    A. Petrus, “Contractibility of Whitney continua inC(X)”, Gen. Topol. Appl.,9, No. 3, 275–288 (1978).

  335. 335.

    E. Pol, “On the dimension of the product of metrizable spaces”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,26, No. 6, 525–534 (1978).

  336. 336.

    L. Polkowski, “On N. Noble's theorems concerning powers of spaces and mappings”, Colloq. Math.,41, No. 2, 215–217 (1979).

  337. 337.

    V. Popov, “On the subspaces of expX”, in: Topology. 4th Colloq. Budapest, 1978,2, Amsterdam (1980), pp. 977–984.

  338. 338.

    C. W. Proctor, “A characterization of absolutelyC *-smooth continua”, Proc. Am. Math. Soc.,92, No. 2, 293–296 (1984).

  339. 339.

    T. C. Przymusinski, “On the dimension of product spaces and an example of M. Wage”, Proc. Am. Math. Soc.,76, No. 2, 315–321 (1979).

  340. 340.

    T. C. Przymusinski, “Normality and paracompactness in finite and countable Cartesian products”, Fund. Math.,105, No. 2, 87–104 (1980).

  341. 341.

    T. C. Przymusinski, “Products of perfectly normal spaces”, Fund. Math.,108, No. 2, 129–136 (1980).

  342. 342.

    N. Rallis, “Periodic points of symmetric prduct mappings”, Fund. Math.,117, No. 1, 61–66 (1983).

  343. 343.

    N. Rallis, “A fixed point index theory for symmetric product mappings”, Manuscr. Math.,44, No. 1, 279–308 (1983).

  344. 344.

    C. J. Rhee, “On dimension of the hyperspace of pseduo-circle”, Bull. Soc. R. Sci. Liege,43, Nos. 1–2, 5–8 (1974).

  345. 345.

    C. J. Rhee, “M-set and the contractibility ofC(X)”, Bull. Soc. R. Sci. Liege,56, No. 7, 55–70 (1987).

  346. 346.

    J. T. Rogers, Jr., “Dimension of hyperspaces”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,20, No. 2, 177–179 (1972).

  347. 347.

    J. T. Rogers, Jr., “The cone-hyperspace property”, Can. J. Math.,24, No. 2, 279–285 (1972).

  348. 348.

    J. T. Rogers, Jr., “Whitney continua in the hyperspaceC(X)”, Pac. J. Math.,58, No. 2, 569–584 (1975).

  349. 349.

    J. T. Rogers, Jr., “The Whitney subcontinua ofC(X)”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,24, No. 2, 125–127 (1976).

  350. 350.

    J. T. Rogers, Jr., “Dimension and the Whitney subcontinua ofC(X)”, Gen. Topol. Appl.,6, No. 1, 91–100 (1976).

  351. 351.

    J. T. Rogers, Jr., “Applications of Vietoris-Begle theorem for multivalued maps to the cohomology of hyperspaces”, Mich. Math. J.,22, No. 4, 315–319 (1976).

  352. 352.

    H. J. Schmidt, “Hyperspaces topologies indued by extensions”, In: Proc. Conf. Topol. and Meas. III, Vitte/Hiddensee, Oct. 19–25, 1980, Part 2, Greifswald (1982), pp. 251–257.

  353. 353.

    H. J. Schmidt, “Hyperspaces of quotient and subspaces. I. Hausdorff topological spaces”, Math. Nachr.,104, 271–280 (1981).

  354. 354.

    H. J. Schmidt, “Hyperspaces of quotient and subspaces, II. Metrizable spaces”, Math. Nachr.,104, 281–288 (1981).

  355. 355.

    H. J. Schmidt, “Topologies of the hyperspaces which are induced by extension spaces”, Math. Nachr.,118, 105–113 (1984).

  356. 356.

    R. M. Schori, “Hyperspaces and symmetric products of topological spaces”, Fund. Math.,63, No. 1, 77–88 (1968).

  357. 357.

    R. M. Schori, “Inverse limits and near-homeomorphism techniques in hyperspace problems”, Lect. Notes Math.,378, 421–428 (1974).

  358. 358.

    R. M. Schori and J. E. West, “2I is homeomorphic to the Hilbert cube”, Bull. Am. Math. Soc.,78, No. 3, 402–406 (1972).

  359. 359.

    R. M. Schori and J. E. West, “The hyperspace of the closed unit interval is a Hilbert cube”, Trans. Am. Math. Soc,213, 217–235 (1975).

  360. 360.

    J. Segal, “Hyperspaces of the inverse limit space”, Proc. Am. Math. Soc.,10, No. 5, 706–709 (1959).

  361. 361.

    J. Segal, “A fixed point theorem for the hyperspace of a snakelike continuum”, Fund. Math.,50, No. 3, 237–248 (1962).

  362. 362.

    M. Sekanina, “Hyperspaces and algebras”, In: Proc. Conf. Topol. and Meas. 2, Rostock-Warnemüde, Oct24-No. 2, 1977, Part I (Sect. A), Greifswald (1980), pp. 139–145.

  363. 363.

    D. D. Sherling, “Concerning the cone-hyperspace property”, Can. J. Math.,35, No. 6, 1030–1048 (1983).

  364. 364.

    D. H. Smith, “A note on complete hyperspaces”, Proc. Cambridge Phil. Soc.,52, No. 3, 602–604 (1956).

  365. 365.

    D. H. Smith, “The Borel structure of a hyperspace”, Proc. Cambridge Phil. Soc.,63, No. 4, 947–948 (1967).

  366. 366.

    M. Smith, “Concerning the homeomorphisms of the pseudo-careX as a subspace ofC(X×X)”, Houston J. Math.,12, No. 3, 431–440 (1986).

  367. 367.

    E. Spanier, “Infinite symmetric products, function spaces and duality”, Ann. Math.,69, No. 1, 142–192 (1959).

  368. 368.

    M. Stanojevič, “On hyperspace of compact subsets of k-spaces”, Zb. Rad. Fil. Fak. Nišu. Ser. Mat. Univ. Nišu.,2, 55–60 (1988).

  369. 369.

    S. K. Stein, “The homology of the two-fold symmetric product”, Ann. Math.,59, No. 3, 570–583 (1954).

  370. 370.

    R. Swan, “The homology of cyclic products”, Trans. Am. Math. Soc.,95, 27–68 (1960).

  371. 371.

    T. Swirszcz, “Monadic functors and convexity”, Bull. Acad. Pol. Sci. Sér. Sci. Mat. Astron. Phys.,22, No. 1, 39–42 (1974).

  372. 372.

    A. Szankowski, “Projective potencies and multiplicative extension operators”, Fund. Math.,67, No. 1, 97–113 (1970).

  373. 373.

    Y. Tanaka, “Products of sequential spaces”, Proc. Am. Math. Soc.,54, 371–375 (1976).

  374. 374.

    Y. Tanaka and Hao-Xuan Shou, “Products of closed images ofCW-complexes andk-spaces”, Proc. Am. Math. Soc.,92, No. 3, 465–469 (1984).

  375. 375.

    S. Todorcévić, “Remarks on cellularity in products” Comp. Math.,57, 357–372 (1986).

  376. 376.

    V. T. Todorov, “Remarks on cellularity in products”, Dokl. Bolg. AN SSSR,39, No. 5, 5–8 (1986).

  377. 377.

    H. Torunczyk, “On CE-images of the Hilbert cube and characterization ofQ-manifolds”, Fund. Math.,106, No. 1, 39–40 (1980).

  378. 378.

    H. Torunczyk and J. West, “A Hilbert space limit for the iterated hyperspace functor”, Proc. Am. Math. Soc.,89, No. 2, 329–335 (1983).

  379. 379.

    W. R. R. Transue, “On the hyperspace of subcontinua of the pseudoarc”, Proc. Am. Math. Soc.,18, No. 6, 1074–1075 (1967).

  380. 380.

    V. Trnkova, “Homeomorphisms of powers of metric spaces”, Comment. Math. Univ. Carol.,21, No. 1, 41–53 (1980).

  381. 381.

    K. Tsuda, “Some examples concerning the dimension of product spaces”, Mat. Jpn.,27, No. 2, 177–195 (1982).

  382. 382.

    M. Turzński, “Remarks on superextensions”, Colloq. Math.,43, No. 2, 243–249 (1980).

  383. 383.

    E. D. Tymchatyn, “Hyperspaces of hereditarily indecomposable plane continua”, Proc. Am. Math. Soc.,56, 300–302 (1976).

  384. 384.

    V. Uspenskii, “For anyX, the productX×Y is homogeneous for someY”, Proc. Am. Math. Soc.,87, No. 1, 187–188 (1983).

  385. 385.

    V. M. Valov, “Another characterization ofAE(0)-spaces”, Pac. J. Math.,127, No. 1, 199–208 (1987).

  386. 386.

    V. M. Valov, “Milutin mappings andAE(0)-spaces”, Dokl. Bulg. Akad. Nauk,40, No. 11, 9–12 (1987).

  387. 387.

    V. M. Valov, “Yet another characterization ofAE(0)-spaces”, Proc. 17th Prolet. Conf. Math. Soc. Bulgaria, Sil'nchev, 6–9 April 1988, Sophia (1988), pp. 147–150

  388. 388.

    M. van de Vel, “The fixed point property of superextensions”, In: Gen. Topol. and Relat. Modern. Anal, and Algebra IV. Proc. 4th Prague Topol. Symp., 1979, Part B, Prague (1977), pp. 477–480.

  389. 389.

    M. van de Vel, “Dimension of convex hyperspaces: nonmetric case”, Compos. Math.,50, No. 1, 95–108 (1983).

  390. 390.

    M. van de Vel, “Dimension of convex hyperspaces”, Fund. Math.,122, No. 2, 100–127 (1984).

  391. 391.

    A. Verbeek, Superextensions of Topological Spaces, Math. Centre Tracts, No. 41, Amsterdam (1972).

  392. 392.

    C. S. Vora, “SymmetricG-products of A-ANR”, Publ. Ist. Math. Univ. Genova,30 (1972).

  393. 393.

    C. S. Vora, “Fixed points of symmetric product mappings of metric manifolds”, Fund. Math.,85, No. 1, 19–24 (1974).

  394. 394.

    C. S. Vora, “Fixed points of certain symmetric product mappings of a compact A-ANR”, Math. Stud.,42, Nos. 1–4, 379–396 (1974–1975).

  395. 395.

    M. L. Wage, “The dimension of product spaces”, Proc. Nat. Acad. Sci. USA,75, No. 10, 4671–4672 (1978).

  396. 396.

    C. Wagner, “Symmetric, cyclic, and permutation products on manifolds”, Dissert. Math. Roz. Mat.,182, 3–48 (1980).

  397. 397.

    L. E. Ward, Jr., “Extending Whitney maps”, Pac. J. Math.,93, No. 2, 465–469 (1981).

  398. 398.

    L. E. War, Jr., “Local selections and local dendrites”, Topol. Appl.,20, No. 1, 47–58 (1985).

  399. 399.

    E. Wattel, “Superextensions embedded in cubes”, Math. Centre. Tracts, No. 116, 305–317 (1979).

  400. 400.

    E. Wattel, “A hereditarily separable compact ordered spaceX for which λX is not first countable”, Math. Centre Tracts, No. 116, 319–321 (1979).

  401. 401.

    J. E. West, “Infinite products which are Hilbert cubes”, Trans. Am. Math. Soc.,81, No. 1, 163–165 (1975).

  402. 402.

    M. Wćjcicka, “Note on the Baire category in spaces of probability measures on nonseparable metrizable spaces”, Bull. Pol. Acad. Sci. Math.,33, Nos. 5–6, 305–311 (1985).

  403. 403.

    R. Y. T. Wong, “Some remarks on hyperspaces”, Proc. Am. Math. Soc.,21, No. 3, 600–602 (1969).

  404. 404.

    O. Wyler, “Algebraic theory of continuous lattices”, Lect. Notes Math.,871, 390–413 (1981).

  405. 405.

    Lin Xie, “Some results on the local compactness of hyperspaces”, Acta Math. Sin.,26, No. 6, 650–656 (1983).

  406. 406.

    P. Zenor, “HereditaryM-separability and hereditarym-Lindelöf property in product spaces and function spaces”, Fund. Math.,106, No. 3, 175–180 (1980).

Additional Citations

  1. 407.

    N. V. Velichko, “On a space of closed subsets”, Sib. Mat. Zh.,16, No. 3, 627–629 (1975).

  2. 408.

    V. I. Malykhin and B. É. Shapirovskii, “The Martin axiom and the properties of topological spaces”, Dokl. Akad. Nauk SSSR,213, No. 3, 532–535 (1973).

  3. 409.

    J. Keesling, “On equivalence of normality and compactness in hyperspaces”, Pac. J. Math.,33, No. 3, 657–667 (1870).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Algebra, Topologiya, Geometriya, Vol. 28, pp. 47–95, 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zarichnyi, M.M., Fedorchuk, V.V. Covariant functors in categories of topological spaces. J Math Sci 53, 147–176 (1991). https://doi.org/10.1007/BF01098256

Download citation

Keywords

  • Manifold
  • Topological Space
  • Algebraic Theory
  • Covariant Functor
  • Absolute Extensor