Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Linear groups

Abstract

The paper is based on material reviewed in RefZhMat during 1971–1977 and continues a survey of the same name which appeared in this series in 1971. In light of the Tits alternative two old areas have now acquired special importance-free linear groups and solvable linear groups; they are given special attention. Other areas are discussed in somewhat more detail than previously.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    Automorphisms of the Classical Groups [Russian translation], Mir, Moscow (1976).

  2. 2.

    B. N. Apanasov, “On the relation of the group SL(n, Z) to the n-dimensional modular group,” Dokl. Akad. Nauk SSSR,231, No. 5, 1033–1036 (1976).

  3. 3.

    I. S. Arzhanykh, “The explicit form of the multiplicative linear group,” UzSSR Fanlar Akad. Akhboroti, Fiz.-Mat. Fanlari Ser., Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 3, 19–22 (1976).

  4. 4.

    N. S. Akhmedov, “On the representation of square matrices in the form of a product of a diagonal, orthogonal, triangular, and integral unimodular matrices (in connection with the inhomogeneous Minkowski conjecture),” Zap. Nauch. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,67, 86–107 (1977).

  5. 5.

    N. S. Akhmedov, “Representation of matrices in the form DOTU,” Tr, Smarkand. Univ.,286, 18–27 (1975).

  6. 6.

    F. Bachmann, Construction of Geometry on the Basis of the Symmetry Concept [Russian translation], Nauka, Moscow (1969).

  7. 7.

    V. A. Belonogov and A. N. Fomin, Matrix Representations in the Theory of Finite Groups [in Russian], Nauka, Moscow (1976).

  8. 8.

    Z. I. Borevich, “On parabolic subgroups in linear groups over a semilocal ring,” Vestn. Leningr. Univ., No. 13, 16–24 (1976).

  9. 9.

    Z. I. Borevich, “On parabolic subgroups in the special linear group over a semilocal ring,” Vestn. Leningr. Univ., No. 19, 29–34 (1976).

  10. 10.

    Z. I. Borevich, “Description of the subgroups of the full linear group which contain a group of diagonal matrices,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,64, 12–29 (1976).

  11. 11.

    Z. I. Borevich and B. A. Tolasov, “On reticular normal divisors of the full linear group,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,64, 49–54 (1976).

  12. 12.

    N. A. Vavilov, “On parabolic congruence subgroups in linear groups,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,64, 55–63 (1976).

  13. 13.

    Yu. E. Vapné, “On matrix representability of nilpotent products of groups,” Mat. Zametki,14, No. 3, 383–394 (1973).

  14. 14.

    L. N. Vasershtein, “On the group SL2 over Dedekind rings of arithmetic type,” Mat. Sb.,89, No. 2, 313–322 (1972).

  15. 15.

    L. N. Vasershtein and A. V. Mikhalev, “On normal subgroups of the orthogonal group over a ring with involution,” Algebra Logika,9, No. 6, 629–632 (1970).

  16. 16.

    E. B. Vinberg, “Discrete linear groups generated by reflections,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 5, 1072–1112 (1971).

  17. 17.

    A. L. Vishnevetskii, “Solvable groups possessing a faithful, irreducible, rational representation of prime degree,” Dokl. Akad. Nauk Ukr. SSR, A, No. 11, 963–964 (1976).

  18. 18.

    R. T. Vol'vachev, “Nonsolvability of problems of isomorphism and conjugacy of commutative matrix groups and algebras,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz. Mat. Nauk, No. 5, 98–101 (1975).

  19. 19.

    R. T. Vol'vachev and D. A. Suprunenko, “Linear groups,” in: Algebra. Topologiya. Geometriya, 1965 (Itogi Nauki. VINITI AN SSSR), Moscow (1967), pp. 45–61.

  20. 20.

    M. S. Garashchuk, “Linear Z-groups,” Vestn. Belorus. Univ., Ser. 1, No. 2, 3–4 (1972).

  21. 21.

    M. S. Garashchuk, “Meta-Hamiltonian linear groups,” Vestn. Belorus. Univ., Ser. 1, No. 2, 89–90 (1975).

  22. 22.

    I. Z. Golubchik, “On normal divisors of the orthogonal group over an associative ring with involution,” Usp. Mat. Nauk,30, No. 6, 165 (1975).

  23. 23.

    I. Z. Golubchik, “On the full linear group over an associative ring,” Usp. Mat. Nauk,28, No. 3, 179–180 (1973).

  24. 24.

    Yu. M. Gorchakov and V. M. Levchuk, “On the approximation of free groups,” Algebra Logika,9, No. 4, 415–421 (1970).

  25. 25.

    B. N. Delone, R. V. Galiulin, and M. I. Shtogrin, “On types of Bravais lattices,” in: Sovrem. Probl. Mat., Vol. 2 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1973), pp. 119–254.

  26. 26.

    V. S. Drobotenko, E. S. Drobotenko, and E. Ya. Pogorilyak, “Automorphisms of linear groups over commutative rings with a minimal condition,” Usp. Mat. Nauk,28. No. 6, 205–206 (1973).

  27. 27.

    V. S. Drobotenko and E. Ya. Pogoriiyak, “Automorphisms of the full linear group over a noncommutative semilocal ring,” Usp. Mat. Nauk,32, No. 3, 157–158 (1977).

  28. 28.

    E. V. Dybkova, “On some congruence subgroups of the symplectic groups,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,64, 80–91 (1976).

  29. 29.

    L. N. Zhuzhzhina, “On classes of conjugate elements of the unitriangular group,” Fifth All-Union Symposium, on Group Theory (Krasnodar, 1–3 October, 1976), Novosibirsk (1976), pp. 27–28.

  30. 30.

    L. E. Zagorin, “On maximal commutative matrix algebras and maximal commutative matrix groups over a local ring,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 122–123 (1973).

  31. 31.

    A. E. Zalesskii, “Classification of finite linear groups of degrees 4 and 5 over a field of characteristic 2,” Dokl. Akad. Nauk BSSR,21, No. 5, 389–392 (1977).

  32. 32.

    A. E. Zalesskii, “Classification of finite irreducible linear groups of degree 5 over a field of characteristic not equal to 0, 2, 3, 5,” Dokl. Akad. Nauk BSSR,20, No. 9, 773–775 (1976).

  33. 33.

    A. E. Zalesskii, “Subgroups of the classical groups,” Sib. Mat. Zh.,12, No. 1, 126–133 (1971).

  34. 34.

    A. E. Zalesskii and V. S. Konyukh, “Sylovp-subgroups of the classical groups,” Mat. Sb.,101, No. 2, 231–251 (1976).

  35. 35.

    A. E. Zalesskii and V. N. Serezhkin, “Linear groups generated by transvections,” Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 1, 26–49 (1976).

  36. 36.

    A. E. Zalesskii and I. D. Suprunenko, “On irreducible linear groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 43–45 (1975).

  37. 37.

    K. A. Ivanov, “Elementary properties of the unitary and orthogonal groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 135–136 (1975).

  38. 38.

    Yu. A. Ignatov, “Free groups generated by two parabolic, linear fractional transformations,” in: Sovrem. Algebra, No. 4, Leningrad (1976), pp. 87–90.

  39. 39.

    M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of Group Theory [in Russian], 2nd Ed., Nauka, Moscow (1977).

  40. 40.

    I. S. Klein and A. V. Mikhalev, “The orthogonal group of Steinberg over a ring with involution,” Algebra Logika, 9, No. 2, 145–166 (1970).

  41. 41.

    I. S. Klein and A. V. Mikhalev, “The unitary group of Steinberg over a ring with involution,” Algebra Logika,9, No. 5, 510–519 (1970).

  42. 42.

    V. S. Konyukh, “On the theory of solvable linear groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 5–13 (1974); No. 5, 102–103 (1975).

  43. 43.

    V. S. Konyukh, “On maximal solvable subgroups of the real orthogonal and unitary groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 5–12 (1971).

  44. 44.

    V. S. Konyukh, “On solvable linear groups. I,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 17–24 (1975); No. 5, 5–13 (1976).

  45. 45.

    V. S. Konyukh, “On imprimitive linear groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 5–9 (1973).

  46. 46.

    T. I. Kopylova, “Finite irreducible solvable groups of matrices of prime degree,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 14–22 (1976).

  47. 47.

    T. I. Kopylova, “Minimal solvable nilpotent of class 2 subgroups of the group GL(n, Δ),” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 130 (1977).

  48. 48.

    T. I. Kopylova, “Irreducible representations of the Miller-Moreno group,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 5–9 (1975).

  49. 49.

    Kourovskaya Notebook. Unsolved Problems of Group Theory [in Russian], 5th Ed., Novosibirsk (1976).

  50. 50.

    A. G. Kurosh and S. N. Chernikov, “Solvable and nilpotent groups,” Usp. Mat. Nauk,2, No. 3, 18–59 (1947).

  51. 51.

    E. M. Levich, “On the representation of solvable groups by matrices over a field of characteristic zero,” Dokl. Akad. Nauk SSSR,188, No. 3, 520–521 (1969). Letter to the Editor, Dokl. Akad. Nauk SSSR,192, No. 6, 1198 (1970).

  52. 52.

    E. M. Levich, “On the isomorphic representation of certain classes of infinite groups over fields of characteristic zero,” Latv. Mat. Ezhegodnik,8, 151–160 (1971).

  53. 53.

    V. M. Levchuk, “Automorphisms of some nilpotent matrix groups and rings,” Dokl. Akad. Nauk SSSR,222, No. 6, 1279–1282 (1975).

  54. 54.

    V. M. Levchuk, “Subgroups of the unitriangular group,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 6, 1202–1220 (1974).

  55. 55.

    V. M. Levchuk, “Connections of the unitriangular group with certain rings. I,” Algebra Logika,15, No. 5, 558–578 (1976).

  56. 56.

    S. G. Liskovets, “Maximal biprimary permutation groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 13–17 (1973).

  57. 57.

    V. A. Likhovshvai, “Automorphisms of congruence subgroups of the symplectic group,” Fifth All-Union Symp. on Group Theory (Krasnodar, 1–3 October, 1976) [in Russian], Novosibirsk (1976), pp. 58–59.

  58. 58.

    Z. D. Lomakina, “On a geometric algorithm for finding maximal groups of integral n × n matrices and its execution on a computer,” Uch. Zap. Ivanov. Univ.,89, 76–82 (1974).

  59. 59.

    V. D. Mazurov, “Finite groups,” in: Algebra. Topologiya. Geometriya, Vol. 14 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1976), pp. 5–56.

  60. 60.

    A. I. Mal'tsev, Selected Works, Vol. 1, Classical Algebra [in Russian], Nauka, Moscow (1976).

  61. 61.

    G. V. Matveev, “The type of elements of the orthogonal groups,” Mat. Zametki,13, No. 5, 695–702 (1973).

  62. 62.

    G. V. Matveev, “The type of elements of unitary groups,” Dokl. Akad. Nauk BSSR,18, No. 5, 391–393 (1974).

  63. 63.

    O. V. Mel'nikov, “The congruence kernel of the group SL2(Z),” Dokl. Akad. Nauk SSSR,228, No. 5, 1034–1036 (1976).

  64. 64.

    Yu. I. Merzlyakov, “Automorphisms of two-dimensional congruence subgroups,” Algebra Logika,12, No. 4, 468–477 (1973).

  65. 65.

    Yu. I. Merzlyakov, “Remarks on the matrix representability of groups,” Algebra Logika,14, No. 2, 143–144 (1975).

  66. 66.

    Yu. I. Merzlyakov, “Investigations on the matrix representability of abstract groups and matrix groups,” Mat. Zametki,14, No. 4, 597–606 (1973).

  67. 67.

    Yu. I. Merzlyakov, “On the theory of generalized solvable and generalized nilpotent groups,” Algebra Logika,2, No. 5, 29–36 (1963).

  68. 68.

    Yu. I. Merzlyakov, “Linear groups,” in: Algebra. Topologiya. Geometriya, 1970 (Itogi Nauki. VINITI AN SSSR), Moscow (1971), pp. 75–110.

  69. 69.

    Yu. I. Merzlyakov, “On the linearity of groups of automorphisms of linear groups,” Algebra Logika,10, No. 5, 503–522 (1971).

  70. 70.

    Yu. I. Merzlyakov, “A survey of the newest results on automorphisms of classical groups,” in: Automorphisms of Classical Groups [Russian translation], Mir, Moscows (1976), pp. 250–259.

  71. 71.

    Yu. I. Merzlyakov, Rational Groups. Part 3. Linear Groups, Novosibirsk (1975).

  72. 72.

    Yu. I. Merzlyakov, “Integral representation of the holomorphs of polycyclic groups,” Algebra Logika,9, No. 5, 539–558 (1970).

  73. 73.

    J. Milnor, An Introduction to Algebraic K-Theory [Russian translation], Mir, Moscow (1974).

  74. 74.

    V. I. Monastyrnyi, “On the locally solvable subgroups of the multiplicative group of an algebraic skew field,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 123 (1974).

  75. 75.

    M. M. Murach, “On some generalized FC-groups of matrices,” Ukr. Mat. Zh.,28, No. 1, 92–97 (1976).

  76. 76.

    M. M. Murach, “FC-solvable; groups of automorphisms of solvable groups,” in: Groups Having Subgroups with Given Properties, Kiev (1973), pp. 309–324.

  77. 77.

    Kh. N. Narzullaev, “On the representation of a unimodular matrix in the form DOTU for n=3,” Mat. Zametki,18, No. 2, 213–221 (1975).

  78. 78.

    Nguyen Kuok Tkhi, “Maximal periodic subgroups of the group SU(3),” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 15–22 (1972).

  79. 79.

    G. A. Noskov, “Automorphisms of the group GLn(o) fordim Max(o)⩽ n-2,” Mat. Zametki,17, No. 2, 285–291 (1975).

  80. 80.

    G. A. Noskov, “Generating elements and defining relations of symplectic groups over rings,” Mat. Zametki,16, No. 2, 237–246 (1974).

  81. 81.

    G. A. Noskov, “The subnormal structure of the congruence groups of Merzlyakov,” Sib. Mat. Zh.,14, No. 3, 680–683 (1973).

  82. 82.

    V. P. Platonov, “Finiteness of minimal irreducible linear groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 96–97 (1975).

  83. 83.

    V. P. Platonov, “On the congruence problem for solvable integral groups,” Dokl. Akad. Nauk BSSR,15, No. 10, 869–872 (1971).

  84. 84.

    V. P. Platonov and A. A. Sharomet, “On the congruence problem for linear groups over arithmetic rings,” Dokl. Akad. Nauk BSSR,16, No. 5, 393–396 (1972).

  85. 85.

    V. P. Platonov and V. I. Yanchevskii, “The structure of unitary groups and the commutant of a simple algebra over global fields,” Dokl. Akad. Nauk SSSR,208, No. 3, 541–544 (1973).

  86. 86.

    E. Ya. Pogorilyak, “Automorphisms of a group of matrices of second order over a commutative local ring,” Mat. Sb., Naukova-Dumka, Kiev (1976), pp. 76–80.

  87. 87.

    L. S. Pontryagin, Continuous Groups [in Russian], 3rd Ed., Nauka, Moscow (1973).

  88. 88.

    Fifth All-Union Symposium on Group Theory, Krasnodar, 1–3 October, 1976, Texts of Reports, Novosibirsk (1976).

  89. 89.

    V. V. Rokotyanskaya and V. I. Yurchenko, “Finiteness conditions for some linear groups,” Ukr. Mat. Zh.,27, No. 6, 838–840 (1975).

  90. 90.

    A. V. Romanovskii, “On Finite solvable linear groups,” in: Finite Groups [in Russian], Nauka i Tekhnika Minsk (1975), pp. 129–132.

  91. 91.

    N. S. Romanovskii, “Bases of identities of some matrix groups,” Algebra Logika,10, No. 4, 401–406 (1971).

  92. 92.

    N. S. Romanovskii, “On subgroups of the general and special linear groups over a ring,” Mat. Zametki,9, No. 6, 699–708 (1971).

  93. 93.

    S. S. Ryshkov, “Maximal finite groups of integral n × n matrices and complete groups of integral automorphisms of positive quadratic forms (of Bravais type),” Tr. Mat. Inst. Akad. Nauk SSSR,128, 183–211 (1972).

  94. 94.

    S. S. Ryshkov, “On maximal finite groups of integral n × n matrices,” Dokl. Akad. Nauk SSSR,204, No. 3, 561–564 (1972).

  95. 95.

    S. S. Ryshkov, “On rationally equivalent finite groups of integral n × n matrices,” Uch. Zap. Ivanov. Univ.89, 83–86 (1974).

  96. 96.

    R. A. Sarkisyan, “On the conjugacy problem for the group GLn,” 14th All-Union Algebraic Conference, Part 1, Novosibirsk (1977), p. 59.

  97. 97.

    V. N. Serezhkin, “Irreducible finite linear groups containing a three-dimensional orthogonal subgroup,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 125 (1976).

  98. 98.

    J.-P. Serre, “Trees, amalgams in SL2,” Matematika, Period. Coll. of Transi, of Foreign Papers,18, No. 1, 3–51 (1974); No. 2, 3–27 (1974).

  99. 99.

    Yu. V. Sosnovskii, “The commutator structure of symplectic groups,” Fifth All-Union Symposium on Group Theory (Krasnodar, 1–3 October, 1976) [in Russian], Novosibirsk (1976), pp. 88–89.

  100. 100.

    R. Steinberg, Lectures on Chevalley Groups [Russian translation], Mir, Moscow (1975).

  101. 101.

    D. A. Suprunenko, Groups of Matrices [in Russian], Nauka, Moscow (1972).

  102. 102.

    D. A. Suprunenko, “Remarks on minimal irreducible linear groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 5–8 (1974).

  103. 103.

    D. A. Suprunenko, “Minimal irreducible solvable linear groups of prime degree,” Dokl. Akad. Nauk SSSR,205, No. 3, 540–541 (1972).

  104. 104.

    D. A. Suprunenko, “On finite irreducible solvable linear groups,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 5–16 (1971).

  105. 105.

    D. A. Suprunenko, “On solvable groups of matrices over a field of prime characteristic,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 120–121 (1971).

  106. 106.

    D. A. Suprunenko, “On a class of monomial, minimal, irreducible groups,” Dokl. Akad. Nauk BSSR,20, No. 10, 869–872 (1976).

  107. 107.

    A. A. Suslin, “On the structure of the special linear group over rings of polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 2, 235–252 (1977).

  108. 108.

    A. I. Tokarenko, “Two ‘large’ radicals in linear groups,” Latv. Mat. Ezhegodnik,13, 115–118 (1973).

  109. 109.

    D. Khadzhiev, “The group Sp(m, n, Ω) and some questions of the theory of the invariants for its actions,” in: Vopr. Mat. (Sb. Nauchn. Tr. Tashkent, Univ., No. 490), Tashkent (1976), pp. 230–235.

  110. 110.

    V. P. Shunkov, “On abstract characterizations of some linear groups,” in: Algebra. Matrices and Matrix Groups, Krasnoyarsk (1970), pp. 5–54.

  111. 111.

    D. I. Éidel'kind “On faithful representations of relatively free groups,” Algebra Logika,10, No. 4, 449–473 (1971).

  112. 112.

    V. P. Yuferev, “Classification of minimal, irreducible solvable linear groups of prime degree,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 5–10 (1974).

  113. 113.

    V. P. Yuferev, “Meta-Abelian groups of matrices over an algebraic extension of a finite field,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 125–127 (1976).

  114. 114.

    V. I. Yanchevskii, “Simple algebras with involutions and unitary groups,” Mat. Sb.,93, No. 3, 368–380 (1974).

  115. 115.

    A. N. Acharya, “A note on a stability theorem of the general linear group,” J. Indian Math. Soc.,39, Nos. 1–4, 51–68 (1975).

  116. 116.

    N. D. Allan, “A note on the arithmetic of the orthogonal group,” Rev. Colomb. Math.,7, No. 2, 53–66 (1973); II, Port. Math.,33, Nos. 3–4, 193–197 (1974).

  117. 117.

    N. D. Allan, “Maximal open compact subgroups of the projective symplectic group over a locally compact discrete valuation field,” Rev. Colomb. Math.,5, No. 3, 31–58 (1971).

  118. 118.

    N. D. Allan, “On the maximality of Sp(L) in Spn(K),” Rev. Colomb. Math.,4, No. 1, 7–15 (1970).

  119. 119.

    A. O. Asar, “On locally finite groups with min-2,” J. London Math. Soc.,9, No. 4, 513–517 (1975).

  120. 120.

    S. Bachmuth and H. Mochizuki, “Triples of 2 × 2 matrices which generate free groups,” Proc. Am. Math. Soc.,59, No. 1, 25–28 (1976).

  121. 121.

    R. Baeza, “Eine Zerlegung der unitären Gruppe über lokalen Ringen,” Arch. Math.,24, No. 2, 144–157 (1973).

  122. 122.

    Eiichi Bannai and Etsukq Bannai, “On some finite subgroups of GL(n, Q),” J. Fac. Sci. Univ. Tokyo, Sec. IA,20, No. 3, 319–340 (1973).

  123. 123.

    E. P. Bauhoff, “Verallgemeinerung eines Satzes von Fricke-Wohlfährt,” Math. Ann.,195, No. 3, 249–256 (1972).

  124. 124.

    M. J. Beetham, “A set of generators and relations for the group PSL(2, q), q odd,” J. London Math. Soc.,3, No. 3, 554–557 (1971)

  125. 125.

    H. Behr, “Eine endliche Präsentation der symplektischen Gruppe Sp4(Z),” Math. Z.,141, 47–56 (1975).

  126. 126.

    H. Behr, “Explizite Präsentation von Chevalleygruppen über Z,” Math. Z.,141, No. 3, 235–251 (1975).

  127. 127.

    L. A. Best, “On torsion-free discrete subgroups of PSL(2, C) with compact orbit space,” Can. J. Math.,23, No. 3, 451–460 (1971).

  128. 128.

    H. I. Blau, “On finite linear groups of degree 16,” Ill. J. Math.,19, No. 3, 344–353 (1975).

  129. 129.

    H. I. Blau, “On linear groups of degree p -2,” J. Algebra,36, No. 3, 495–498 (1975).

  130. 130.

    H. I. Blau, “On the center of some finite linear groups,” Proc. Am. Math. Soc.,53, No. 1, 41–44 (1975).

  131. 131.

    H. I. Blau, “Some criteria for the nonexistence of certain finite linear groups,” Proc. Am. Math. Soc.,43, No. 2, 283–286 (1974).

  132. 132.

    H. I. Blau, “Under the degree of some finite linear groups,” Trans. Am. Math. Soc.,155, No. 1, 95–113 (1971); II,203, 87–96 (1975).

  133. 133.

    S. Böge, “Eine Bemerkung zur Reduktionstheorie in orthogonalen Gruppen,” Math. Ann.,193, No. 1, 38–48 (1971).

  134. 134.

    S. Böge, “Definierende Relationen zwischen Erzeugenden der klassischen Gruppen,” Abhandl. Math. Semin. Univ. Hamburg,30, Nos. 3–4, 165–178 (1967).

  135. 135.

    A. Borel and J. Tits, “Homomorphismes 《abstraits》 de groupes algébriques simples,” Ann. Math.,97, No. 3, 499–571 (1973).

  136. 136.

    J. L. Brenner, R. A. Macleod, and D. D. Olesky, “Non-free groups generated by two 2 × 2 matrices,” Can. J. Math.,27, No. 2, 237–245 (1975).

  137. 137.

    H. Brown, J. Neubüser, and H. Zassenhaus, “On integral groups. I. The reducible case,” Numer. Math.,19, No. 5, 386–399 (1972); “II. The irreducible case,” Numer. Math.,20, No. 1, 22–31 (1972); “III. Normalizers,” Math. Comput.,27, No. 121, 167–182 (1973).

  138. 138.

    R. M. Bryant, “On the laws of certain linear groups,” J. London Math. Soc.,4, No. 2, 309–313 (1971).

  139. 139.

    N. Burgoyne and R. Cushman, “Conjugacy classes in linear groups,” J. Algebra,44, No. 2, 339–362 (1977).

  140. 140.

    R. G. Burns and I. H. Farouqi, “Maximal normal subgroups of the integral linear groups of countable degree,” Bull. Austral. Math. Soc.,15, No. 3, 439–451 (1976).

  141. 141.

    D. Callan, “The generation of Sp(F2) by transvections,” J. Algebra,42, No. 2, 378–390 (1976).

  142. 142.

    P. Carbonne, “Sur certains sous-groupes de GL(m, k),” C. R. Acad. Sci.,274, No. 3, A239-A240 (1972).

  143. 143.

    Chan-nan Chang, “Integral orthogonal groups overR1)(π2)-(πn),” J. Algebra,39, No. 1, 308–327 (1976).

  144. 144.

    Chan-nan Chang, “Local orthogonal groups over 2-adic fields. I,” J. Algebra,29, No. 1, 57–64 (1974); II,30, Nos. 1–3, 421–435 (1974).

  145. 145.

    Chan-nan Chang, “Orthogonal groups over semilocal domains,” J. Algebra,37, No. 1, 137–164 (1975).

  146. 146.

    Chan-nan Chang, “The structure of a symplectic group over the integers of a dyadic field,” J. Algebra,34, No. 1, 172–187 (1975).

  147. 147.

    Chan-nan Chang, “The structure of the symplectic group over an unramified dyadic field,” J. Algebra,30, Nos. 1–3, 42–50 (1974).

  148. 148.

    Chan-nan Chang, “The structure of the symplectic group over semilocal domains,” J. Algebra,35, Nos. 1–3, 457–476 (1975).

  149. 149.

    Chan-nan Chang, “The unitary group over the integers of a quaternion algebra,” J. Number Theory,5, No. 6, 456–476 (1973).

  150. 150.

    Chan-nan Chang, “The unitary group over the integers of an unramified local field,” J. Algebra,30, Nos. 1–3, 535–547 (1974).

  151. 151.

    Chan-nan Chang, “Unitary groups over semilocal domains. I,” J. Algebra,39, No. 1, 160–174 (1976).

  152. 152.

    Chan-nan Chang and Chao-kun Cheng, “Symplectic groups over principal ideal domains,” J. Algebra,41, No. 2, 455–472 (1976).

  153. 153.

    U. Christian, “Über gewisse Gleichungen zwischen symplektischen Matrizen,” J. Reine Angew. Math.,243, 55–65 (1970).

  154. 154.

    U. Christian, “Zur Theorie der symplektischen Gruppen,” Acta Arithm.,24, No. 1, 61–85 (1973).

  155. 155.

    P. M. Cohn, “Automorphisms of two-dimensional linear groups over Euclidean domains,” J. London Math. Soc.,1, No. 2, 279–293 (1969).

  156. 156.

    S. B. Conlon, “Finite linearp-groups of degree p and the work of G. Szekeres,” Lect. Notes Math.,488, 72–78 (1975).

  157. 157.

    E. A. Connors, “Automorphisms of orthogonal groups in characteristic 2,” J. Number Theory,5, No. 6, 477–501 (1973); II, Am. J. Math.,98, No. 3, 611–617 (1976).

  158. 158.

    E. A. Connors, “Automorphisms of the orthogonal group of a defective space,” J. Algebra,29, No. 1, 113–123 (1974).

  159. 159.

    E. A. Connors, “The automorphisms ofO 4 + (V) in the anisotropic case,” Proc. Am. Math. Soc.,54, 16–18 (1976).

  160. 160.

    E. A. Connors, “The structure ofO'(V)/DO(V) in the defective case,” J. Algebra,34, No. 1, 74–83 (1975).

  161. 161.

    M. Delaney and H. Zassenhaus, “The automorphism group of a space group,” Communs. Algebra,4, No. 4, 305–317 (1976).

  162. 162.

    J. B. Dennin, Jr., “The automorphisms and conjugacy classes of LF(2, 2n),” Ill. J. Math.,19, No. 4, 542–552 (1975).

  163. 163.

    R. K. Dennis, “The GE2 property for discrete subrings ofC,” Proc. Am. Math. Soc.,50, 77–82 (1975).

  164. 164.

    J. A. Dieudonné La Géométrie des Groupes Classiques (Ergeb. Math., 5), Vol. VIII, E. A. Springer-Verlag, Berlin (1971).

  165. 165.

    V. N. Dixit and I. Sinha, “Commutators in certain nilpotent linear groups,” Port. Math.,30, Nos. 3–4, 153–167 (1971).

  166. 166.

    I. D. Dixon, “Free subgroups of linear groups,” Lect. Notes Math.,319, 45–56 (1973).

  167. 167.

    I. D. Dixon, “Linear representations over principal ideal domains,” Lect. Notes Math.,372, 281–284 (1974).

  168. 168.

    I. D. Dixon, “Nilpotence and local nilpotence of linear groups,” Linear Algebra and Appl.,13, Nos. 1/2, 59–67 (1976).

  169. 169.

    I. D. Dixon, “Rigid embedding of simple groups in the general linear group,” Can. J. Math.,29, No. 2, 384–391 (1977).

  170. 170.

    I. D. Dixon, The Structure of Linear Groups, Van Nonstrand, New York (1971).

  171. 171.

    D. Ž. Djoković, “On homomorphisms of the general linear group,” Aequat. Math.,4, Nos. 1–2, 99–102 (1970).

  172. 172.

    D. Ž. Djoković, “The product of two involutions in the unitary group of a Hermitian form,” Indiana Univ. Math. J.,21, No. 5, 449–456 (1971).

  173. 173.

    L. Dornhoff, “Jordan's theorem for solvable groups,” Proc. Am. Math. Soc.,24, No. 3, 533–537 (1970); Proc. Symp. Pure Math., Vol. 21, Represent. Theory Finite Groups and Relat. Top., Providence, Rhode Island (1971), pp. 37–38.

  174. 174.

    M. H. Dull, “Automorphisms of PSL2 over domains with few units,” J. Algebra,27, No. 2, 372–379 (1973).

  175. 175.

    M. H. Dull, “Automorphisms of the two-dimensional linear groups over integral domains,” Am. J. Math.,96, No. 1, 1–40 (1974).

  176. 176.

    R. H. Dye, “On the conjugacy classes of involutions of the orthogonal groups over perfect fields of characteristic 2,” Bull. London Math. Soc.,3, No. 1, 61–66 (1971).

  177. 177.

    R. H. Dye, “On the conjugacy classes of involutions of the simple orthogonal groups over perfect fields of characteristic two,” J. Algebra,18, No. 3, 414–425 (1971).

  178. 178.

    R. H. Dye, “On the conjugacy classes of involutions of the unitary groups Um (K), SUm(K), PUm(K), PSUm(K) over perfect fields of characteristic 2,” J. Algebra,24, No. 3, 453–459 (1973).

  179. 179.

    R. H. Dye, “On the involution classes of the linear groups GLn(K), SLn(K), PGLn(K), PSLn(K) over fields of characteristic two,” Proc. Cambridge Phil. Soc.,72, No. 1, 1–6 (1972).

  180. 180.

    R. H. Dye, “On the transitivity of the orthogonal and symplectic groups in projective space,” Proc. Cambridge Phil. Soc.,68, No. 1, 33–43 (1970).

  181. 181.

    M. Eichler, Quadratische Formen und Orthogonale Gruppen 2, Aufl. (Grundlehren Math. Wiss. Einzeldarstell., 63), Vol. XII, E. A. Springer-Verlag, Berlin (1974).

  182. 182.

    G. B. Elkington, “A property common to the Weyl and orthogonal groups,” Lect. Notes Math.,372, 285–287 (1974).

  183. 183.

    E. W. Ellers, “Generators of the unitary group of characteristic 2,” J. Reine Angew. Math.,276, 95–98 (1975).

  184. 184.

    E. W. Ellers, “The length of a unitary transformation,” J. Reine Angew. Math.,281, 1–5 (1976).

  185. 185.

    E. W. Ellers, “The length of a unitary transformation for characteristic 2,” J. Reine Angew. Math.,281, 6–12 (1976).

  186. 186.

    R. J. Evans, “A new proof on the free product structure of Hecke groups,” Publs. Math.,22, Nos. 1–2, 41–42 (1975).

  187. 187.

    I. H. Farouqi, “On an infinite integral linear group,” Bull. Austral. Math. Soc.,2, No. 2, 283–284 (1970);4, No. 3, 321–342 (1971).

  188. 188.

    F. Fazekas, “Generation of Abelian matrix groups for use in the scattering algebra,” Period. Polytechn. Elec. Eng.,16, No. 1, 3–15 (1972).

  189. 189.

    W. Feit, “On finite linear groups. II,” J. Algebra,30, Nos. 1–3, 496–506 (1974).

  190. 190.

    W. Feit, “On finite linear groups in dimension at most 10,” Proc. Conf. Finite Groups, New York, (1976), pp. 397–407.

  191. 191.

    W. Feit, “On integral representations of finite groups,” Proc. London Math. Soc.,29, No. 4, 633–683 (1974).

  192. 192.

    W. Feit, “The current situation in the theory of finite simple groups,” Actes Congr. Int. Mathématiciens, 1970, Part 1 Paris (1971), pp. 55–93.

  193. 193.

    B. Fine, “The HNN and generalized free product structure of certain linear groups,” Bull. Am. Math. Soc.,81, No. 2, 412–416 (1975).

  194. 194.

    B. Fine, “The structure of PSL2(R), R the ring of integers in a Euclidean quadratic imaginary number field,” Ann. Math. Stud., No. 79, 145–170 (1974).

  195. 195.

    B. Fine and M. Tretkoff, “The SQ-universality of certain arithmetically defined linear groups,” J. London Math. Soc.,13, No. 1, 65–68 (1976).

  196. 196.

    R. K. Fisher, “The number of generators of finite linear groups,” Bull. London Math. Soc.,6, No. 1, 10–12 (1974).

  197. 197.

    R. K. Fisher, “The number of nonsolvable sections in linear groups,” J. London Math. Soc.,9, No. 1, 80–86 (1974).

  198. 198.

    R. K. Fisher, “The polycyclic length of linear and finite polycyclic groups,” Can. J. Math.,26, No. 4, 1002–1009 (1974).

  199. 199.

    E. Formanek and C. Procesi, “Mumford's conjecture for the general linear group,” Adv. Math.,19, No. 3, 292–305 (1976).

  200. 200.

    M. R. Freislich, “Groups of matrices with integer eigenvalues,” J. Austral. Math. Soc.,12, No. 3, 351–357 (1971).

  201. 201.

    H. Freudenthal and H. de Vries, Linear Lie Groups, Vol. XXII, Academic Press, New York (1969).

  202. 202.

    M. Frick and M. F. Newman, “Soluble linear groups,” Bull. Austral. Math. Soc.,6, No. 1, 31–44 (1972).

  203. 203.

    S. C. Geller, “On the GEPn of a ring,” Ill. J. Math.,21, No. 1, 109–112 (1977).

  204. 204.

    J. A. Gibbs, “Automorphisms of certain unipotent groups,” J. Algebra,14, No. 2, 203–228 (1970).

  205. 205.

    G. Glauberman, “Quadratic elements in unipotent linear groups,” J. Algebra,20, No. 3, 637–654 (1972).

  206. 206.

    J. T. Goozeff, “Abelianp-subgroups of the general linear group,” J. Austral. Math. Soc.,11, No. 3, 257–259 (1970).

  207. 207.

    M. Goto, “Analytic subgroups of GL(n, R),” Tohoku Math. J.,25, No. 2, 197–199 (1973).

  208. 208.

    S. M. Green, “Generators and relations for the special linear group over a division ring,” Proc. Am. Math. Soc.,62, No. 2, 229–232 (1977).

  209. 209.

    L. Greenberg and M. Newman, “Normal subgroups of the modular group,” J. Res. Nat. Bur. Stand.,B74, No. 2, 121–123 (1970).

  210. 210.

    P. Gruber, “Eine Bemerkung über DOTU-Matrizen,” J. Number Theory,8, No. 3, 350–351 (1976).

  211. 211.

    G. Günther, “A geometric characterization of orthogonal groups for characteristic 2,” Geom. Dedic.,5, No. 3, 321–346 (1976).

  212. 212.

    C. K. Gupta, “On free groups of the variety\(\mathfrak{A}\mathfrak{N}_2 \wedge \mathfrak{N}_2 \mathfrak{A}\),” Can. Math. Bull.,13, No. 4, 443–446 (1970).

  213. 213.

    C. K. Gupta and N. D. Gupta, “On the linearity of free nilpotent-by-Abelian groups,” J. Algebra,24, No. 2, 293–302 (1973).

  214. 214.

    C. K. Gupta and N. D. Gupta, “Power series and matrix representations of certain relatively free groups,” Lect. Notes Math.,372, 318–329 (1974).

  215. 215.

    W. H. Gustafson, Bull. Am. Math. Soc.,83, No. 3, 318–322 (1977).

  216. 216.

    A. J. Hahn, “Cayley algebras and the isomorphisms of the orthogonal groups over arithmetic and local domains,” J. Algebra,45, No. 1, 210–246 (1977).

  217. 217.

    A. J. Hahn, “Isomorphisms of the integral classical groups and their congruence subgroups,” Am. J. Math.,97, No. 4, 865–887 (1975).

  218. 218.

    A. J. Hahn, “On the isomorphisms of the projective orthogonal groups and their congruence subgroups,” J. Reine Angew. Math.,273, 1–22 (1975).

  219. 219.

    P. Hall, “A note on SI-groups,” J. London Math. Soc.,39, No. 2, 338–344 (1964).

  220. 220.

    D. Hardy and R. J. Wisner, “A dominance semigroup of the modular group,” Publs. Math.,19, Nos. 1–4, 145–149 (1972).

  221. 221.

    D. Hardy and R. J. Wisner, “New proof of a basic theorem about the modular group,” Publs. Math.,18, Nos. 1–4, 109–110 (1971).

  222. 222.

    J. Hausen, “Structural relations between general linear groups and automorphism groups of Abelianp-groups,” Proc. London Math. Soc.,28, No. 4, 614–630 (1974).

  223. 223.

    T. Hawkes, “On the fitting length of a soluble linear group,” Pac. J. Math.,44, No. 2, 537–540 (1973).

  224. 224.

    H. Helling, “On the commensurability class of the rational modular group,” J. London Math. Soc.,2, No. 1, 67–72 (1970).

  225. 225.

    R. D. Horowitz, “Characters of free groups represented in the two-dimensional special linear group,” Commun. Pure Appl. Math.,25, No. 6, 635–649 (1972).

  226. 226.

    R. D. Horowitz, “Induced automorphisms on Fricke characters of free groups,” Trans. Am. Math. Soc.,208, 41–50 (1975).

  227. 227.

    W. C. Huffman, “Linear groups containing an element with an eigenspace of codimension two,” J. Algebra,34, No. 2, 260–287 (1975).

  228. 228.

    W. C. Huffman and D. B. Wales, “Linear groups containing an involution with two eigenvalues ≠1,” J. Algebra,45, No. 2, 465–515 (1977).

  229. 229.

    W. C. Huffman and D. B. Wales, “Linear groups of degree eight with no elements of order seven,” Ill. J. Math.,20, No. 3, 519–527 (1976).

  230. 230.

    W. C. Huffman and D. B. Wales, “Linear groups of degree n containing an element with exactly n−2 equal eigenvalues,” Linear Multilinear Algebra,3, Nos. 1–2, 53–59 (1975).

  231. 231.

    J. E. Humphreys, “On the automorphisms of infinite Chevalley groups,” Can. J. Math.,21, No. 4, 908–911 (1969).

  232. 232.

    B. Huppert, “Zur Konstruktion der reelen Spiegelungsgruppeh 4,” Acta Math. Acad. Sci. Hung.,26, Nos. 3–4, 331–336 (1975).

  233. 233.

    J. F. Hurley, “Some normal subgroups of elementary subgroups of Chevalley groups over rings,” Am. J. Math.,93, No. 4, 1059–1069 (1971).

  234. 234.

    J. Hurrelbrink and U. Rehmann, “Eine endliche Präsentation der Gruppe G2(Z),” Math. Z.,141, No. 3, 243–251 (1975).

  235. 235.

    J. Hurrelbrink and U. Rehmann, “Zur endlichen Präsentation von Chevalley-Gruppen über euklidischen imaginärquadratischen Zahlringen,” Arch. Math.,27, No. 2, 123–133 (1976).

  236. 236.

    I. M. Isaacs, “Complexp-solvable linear groups,” J. Algebra,24, No. 3, 513–530 (1973).

  237. 237.

    I. M. Isaacs, “The number of generators of a linearp-group,” Can. J. Math.,24, No. 5, 851–858 (1972).

  238. 238.

    Hiroyuki Ishibashi, “The decomposition of isometries into symmetries in an orthogonal group over a local principal ideal domain,” Sci. Repts. Tokyo Kyoiku Daigaku, Sec. A,12, Nos. 313–328, 49–58 (1973).

  239. 239.

    D. G. James, “On the normal subgroups of integral orthogonal groups,” Pac. J. Math.,52, No. 1, 107–114 (1974).

  240. 240.

    D. G. James, “On the orthogonal group O(H(A Θ A), A),” J. London Math. Soc.,4, No. 4, 584–586 (1972).

  241. 241.

    D. G. James, “On the structure of orthogonal groups over local rings,” Am. J. Math.,95, No. 2, 255–265 (1973).

  242. 242.

    D. G. James, “Orthogonal groups of dyadic unimodular quadratic forms,” Math. Ann.,201, No. 1, 65–74 (1973); II, Pac. J. Math.,52, No. 2, 425–441 (1974).

  243. 243.

    D. G. James, “Orthogonal groups of three-dimensional anisotropic quadratic forms,” J. Algebra,37, No. 1, 121–136 (1975).

  244. 244.

    D. G. James, “The structure of local integral orthogonal groups,” Trans. Am. Math. Soc.,228, 165–186 (1977).

  245. 245.

    D. G. James, “The structure of orthogonal groups of 2-adic unimodular quadratic forms,” J. Number Theory,5, No. 6, 444–455 (1973).

  246. 246.

    A. A. Johnson, “The automorphisms of the unitary groups over infinite fields,” Am. J. Math.,95, No. 1, 87–107 (1973).

  247. 247.

    A. A. Johnson, “The automorphisms of unitary groups over a field of characteristic 2,” Am. J. Math.,93, No. 2, 367–384 (1971).

  248. 248.

    R. P. Johnson, “Orthogonal groups of local anisotropic spaces,” Am. J. Math.,91, No. 4, 1077–1105 (1969).

  249. 249.

    T. Jørgensen, “A note on subgroups of SL(2,C),” Q. J. Math.,28, No. 110, 209–212 (1977).

  250. 250.

    W. van der Kallen, “The Schur multipliers of SL(3,Z) and SL(4,Z),” Math. Ann.,212, No. 1, 47–49 (1974).

  251. 251.

    Teruo Kanzaki, “A note of the orthogonal group of a quadratic module of rank two over a commutative ring,” Osaka J. Math.,10, No. 3, 607–609 (1973).

  252. 252.

    O. H. Kegel, “Locally finite simple groups,” Lect. Notes Math.,372, 395–400 (1974).

  253. 253.

    O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups, Vol. XI, North-Holland, Amsterdam (1973).

  254. 254.

    R. C. King, “The dimensions of irreducible representations of linear groups,” Can. J. Math.,22, No. 2, 436–448 (1970).

  255. 255.

    R. C. King, “The dimensions of irreducible tensor representations of the orthogonal and symplectic groups,” Can. J. Math.,23, No. 1, 176–188 (1971).

  256. 256.

    F. Kirchheimer, “Zur Bestimmung der linearen Charaktere symplektischer Hauptkonguenzgruppen,” Math. Z.,150, No. 2, 135–148 (1976).

  257. 257.

    H. Klingen, “Zur Struktur der Siegeischen Modulgruppe,” Math. Z.,136, No. 2, 169–178 (1974).

  258. 258.

    P. Klopsch, “Invariante von Spiegelungen erzeugte Untergruppen orthogonaler Gruppen,” Geom. Dedic.,1, No. 1, 85–99 (1972).

  259. 259.

    M. Kneser, Das Kongruenz-Untergruppenproblem für Orthogonale Gruppen, Sitzungsber, Berlin, Math. Ges. (1969–1971), p. 10.

  260. 260.

    Tetsuo Kodama, “On the group indices of the parasymplectic group of level F,” Proc. Am. Math. Soc.,32, No. 2, 349–357 (1972).

  261. 261.

    G. Köhler, “Der Normalisator von Hilbert-Siegelschen Stufengruppen,” Math. Z.,126, No. 3, 247–274 (1972).

  262. 262.

    M. Kucharzewski and B. Szociński, “Über Homomorphismen einer Gruppe von Matrizen,” Ann. Pol. Math.,30, No. 3, 236–242 (1975).

  263. 263.

    K. Kula, “Finite solvable primitive subgroups of GL(n,C,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,21, No. 4, 303–305 (1973).

  264. 264.

    J. C. Lennox and J. Wiegold, “Some remarks on coherent soluble groups,” Bull. Austral. Math. Soc.,10, No. 2, 277–279 (1974).

  265. 265.

    H. S. Leonard, Jr., “Finite linear groups having an Abelian Sylow subgroup,” J. Algebra,20, No. 1, 57–69 (1972).

  266. 266.

    H. S. Leonard, Jr., “On finite complex linear groups of degree (q−1)/2,” Proc. Conf. Finite Groups, New York (1976), pp. 431–444.

  267. 267.

    J. H. Lindsey, II, “Complex linear groups of degree less than 4p/3,” J. Algebra,23, No. 3, 452–475 (1972).

  268. 268.

    J. H. Lindsey, II, “Complex linear groups of degree p + 1,” J. Algebra,20, No. 1, 24–37 (1972).

  269. 269.

    J. H. Lindsey, II, “Finite linear groups of degree six,” Can. J. Math.,23, No. 5, 771–790 (1971).

  270. 270.

    J. H. Lindsey, II, “Finite linear groups of prime degree,” Math. Ann.,189, No. 1, 47–59 (1970).

  271. 271.

    P. Lorimer, “On the finite two-dimensional linear groups. II,” Can. Math. Bull.,15, No. 4, 539–546 (1972).

  272. 272.

    F. Lowenthal, “The orders of generation of SL(2, R),” Lect. Notes Math.,319, 133–134 (1973).

  273. 273.

    R. Lyndon, “Two notes on Rankin's book on the modular group,” J. Austral. Math. Soc.,16, No. 4, 454–457 (1973).

  274. 274.

    R. Lyndon and J. L. Ullman, “Groups generated by two parabolic linear fractional transformations,” Can. J. Math.,21, No. 6, 1388–1403 (1969).

  275. 275.

    S. O. MacDonald and A. P. Street, “On laws in linear groups,” Q. J. Math.,23, No. 89, 1–12 (1972).

  276. 276.

    W. Magnus, “Rational representation of Fuchsian groups and nonparabolic subgroups of the modular group,” Nachr. Akad. Wiss. Göttingen, II, Math.-Phys. Kl., No. 9, 179–189 (1973).

  277. 277.

    W. Magnus, “Two-generator subgroups of PSL(2,C),” Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl., No. 7 (1975).

  278. 278.

    A. Majeed, “Freeness of the group 〈an, bn〉 for some integer n, a,b ɛSL(2,C),” J. Math. Soc. Jpn.,29, No. 1, 29–33 (1977).

  279. 279.

    K. E. Martin, “Orthogonal groups over r(π),” Am. J. Math.,95, No. 1, 59–79 (1973).

  280. 280.

    A. W. Mason, “A note on subgroups of GL(n, A) which are generated by commutators,” J. London Math. Soc.,11, No. 4, 509–512 (1975).

  281. 281.

    A. W. Mason, “Lattice subgroups of normal subgroups of genus zero of the modular group,” Proc. London don Math., Soc.,24, No. 3, 449–469 (1972).

  282. 282.

    A. W. Mason and W. W. Stothers, “On subgroups of GL(n, A) which are generated by commutators,” Invent. Math.,23, Nos. 3–4, 327–346 (1974).

  283. 283.

    G. Maxwell, “Infinite general linear groups over rings,” Trans. Am. Math. Soc.,151, No. 2, 371–375 (1970).

  284. 284.

    G. Maxwell, “Infinite symplectic groups over rings,” Comment. Math. Helv.,47, No. 2, 254–259 (1972).

  285. 285.

    G. Maxwell, “The crystallography of Coxeter groups,” J. Algebra,35, Nos. 1–3, 159–177 (1975).

  286. 286.

    B. R. McDonald, “Automorphisms of GLn(R),” Trans. Am. Math. Soc.,215, 145–159 (1976).

  287. 287.

    B. R. McDonald, “Geometric algebra over local rings,” Monogr. and Textb. Pure and Appl. Math., Vol. XIV, No. 36, New York-Basel (1976).

  288. 288.

    L. McQueen and B. R. McDonald, “Automorphisms of the symplectic group over a local ring,” J. Algebra,30, Nos. 1–3, 485–496 (1974).

  289. 289.

    R. Merris and S. Pierce, “A class of representations of the full linear group,” J. Algebra,17, No. 3, 346–351 (1971).

  290. 290.

    C. Metelli, “Sugli isomorfismi reticolari dell gruppo proiettivo lineare spéciale PSL(2, p),” Atti Ist. Veneto Sci., Lett. Ed Arti. Cl. Sci. Mat. e Natur,127, 73–78 (1968–1969).

  291. 291.

    C. Metelli, “Sugli isomorfismi reticolari di PSL(2, pf),” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,47, No. 6, 446–452 (1969) (1970).

  292. 292.

    M. H. Millington, “Subgroups of the classical modular group,” J. London Math. Soc.,1, No. 2, 351–357 (1969).

  293. 293.

    M. Newman, “A conjecture on a matrix group with two generators,” J. Res. Nat. Bur. Stand.,B78, No. 2, 69–70 (1974).

  294. 294.

    M. Newman, “Congruence subgroups of the modular group,” Math. Comput.,29, No. 129, 207–213 (1975).

  295. 295.

    M. Newman, “Formulas and multiplicative relationships for the parameters of subgroups of the modular group,” Math. Ann.,212. No. 2, 173–182 (1974).

  296. 296.

    M. Newman, Integral Matrices, Vol. VII, Academic Press, New York (1972).

  297. 297.

    M. Newman, “Maximal normal subgroups of the modular group,” Proc. Am. Math. Soc.,19, No. 5, 1138–1144 (1968).

  298. 298.

    M. Newman, “Symmetric completions and products of symmetric matrices,” Trans. Am. Math. Soc.,186, 191–201 (1973).

  299. 299.

    M. Newman, “The soluble length of soluble linear groups,” Math. Z.,126, No. 1, 59–70 (1972).

  300. 300.

    M. Newman, “2-Generator groups and parabolic class numbers,” Proc. Am. Math. Soc.,31, No. 1, 51–53 (1972).

  301. 301.

    M. Newman and S. Pierce, “Bounded matrix groups,” Linear and Multilinear Algebra,1, No. 3, 251–256 (1973).

  302. 302.

    Mitsuru Nishikawa, “On the freedom of paths in GL(n,C),” Bull. Fukuoka Univ. Educ. Nat. Sci.,21, 1–6 (1971).

  303. 303.

    W. Nolte, “Das Relationenproblem für eine Klasse von Untergruppen orthogonaler Gruppen,” J. Reine Angew. Math.,292, 211–220 (1977).

  304. 304.

    W. Nolte, “Spiegelungsrelationen in den engeren orthogonalen Gruppen,” J. Reine Angew. Math.,273, 150–152 (1975).

  305. 305.

    C. W. Norman, “On fixed-point-free involutions of PΓLn(K),” J. London Math. Soc.,13, No. 3, 573–576 (1976).

  306. 306.

    O. T. O'Meara, “A general isomorphism theory for linear groups,” J. Algebra,44, No. 1, 93–142 (1977).

  307. 307.

    O. T. O'Meara, Lectures on Linear Groups, Am. Math. Soc., Vol. VII, Providence, Rhode Island (1974).

  308. 308.

    O. T. O'Meara, Lectures on Symplectic Groups, Vol. III, Univ. of Notre Dame (1976).

  309. 309.

    L. A. Parson, “Dedekind sums and noncongruence subgroups of the Hecke groups G(√2) and G(√3),” Proc. Am. Math. Soc.,57, No. 2, 194–196 (1976).

  310. 310.

    L. A. Parson, “Noncongruence subgroups for the Hecke groups G(√2) and G(√3),” Ill. J. Math.,19, No. 1, 79–86 (1975).

  311. 311.

    J. Patera, P. Winternitz, and H. Zassenhaus, “The maximal solvable subgroups of SO(p,q) groups,” J. Math. Phys.,15, No. 11, 1932–1938 (1974).

  312. 312.

    W. M. Pender, “Classical groups over division rings of characteristic two,” Bull. Austral. Math. Soc.,7, No. 2, 191–226 (1972).

  313. 313.

    H. Petersson, “Über die Konstruktion zykloider Kongruenzgruppen in der rationalen Modulgruppe,” J. Reine Angew. Math.,250, 182–212 (1971).

  314. 314.

    B. B. Phadke, “Products of transvections,” Can. J. Math.,26, No. 6, 1412–1417 (1974).

  315. 315.

    S. Pierce, “A class of representations of the full linear group. II,” Trans. Am. Math. Soc.,173, 251–262 (1972).

  316. 316.

    S. Pierce, “Linear operators preserving the real symplectic group,” Can. J. Math.,27, No. 3, 715–724 (1975).

  317. 317.

    S. Pierce, “Orthogonal groups of positive definite multilinear functionals,” Pac. J. Math.,33, No. 1, 183–189 (1970).

  318. 318.

    W. Plesken, “The Bravais group and the normalizer of a reducible finite subgroup of GL(n, Z),” Commun. Algebra,5, No. 4, 375–396 (1977).

  319. 319.

    W. Plesken and M. Pohst, “On maximal finite irreducible subgroups of GL(n, Z). I. The five and seven dimensional ease. II. The six dimensional case,” Bull. Am. Math. Soc.,82, No. 5 757–758 (1976).

  320. 320.

    B. Pollak, “Orthogonal groups over global fields of characteristic 2,” J. Algebra,15, No. 4, 589–595 (1970).

  321. 321.

    H. Pollatsek, “First cohomology groups of some linear groups over fields of characteristic two,” Ill. J. Math.,15, No. 3, 393–417 (1971).

  322. 322.

    J. Pomfret, “Similarity of matrices over finite rings,” Proc. Am. Math. Soc.,37, No. 2, 421–422 (1973).

  323. 323.

    J. Pomfret and B. R. McDonald, “Automorphisms of GLn(R), R a local ring,” Trans. Am. Math. Soc.,173, 379–388 (1972).

  324. 324.

    S. Poss, “Torsion in PSL(2,I2),” Arch. Math.,25, No. 6, 586–588 (1974).

  325. 325.

    N. Purzitsky, “Real two-dimensional representations of two-generator free groups,” Math. Z.,127, No. 2, 95–104 (1972).

  326. 326.

    N. Purzitsky, “Two-generator discrete free products,” Math. Z.,126, No. 3, 209–223 (1972).

  327. 327.

    D. Quillen, “On the cohomology and K-theory of the general linear groups over a finite field,” Ann. Math.,96, No. 3, 552–586 (1972).

  328. 328.

    R. A. Rankin, “Subgroups of the modular group defined by a single linear congruence,” Acta Arithm.,24, No. 3, 313–323 (1973).

  329. 329.

    R. A. Rankin, “Subgroups of the modular group generated by parabolic elements of constant amplitude,” Acta Arithm.,18, 145–151 (1971).

  330. 330.

    U. Rehmann and C. Soulé, “Finitely presented groups of matrices,” Lect. Notes Math.,551, 164–169 (1976).

  331. 331.

    C. Riehm, “The congruence subgroup problem over local fields,” Am. J. Math.,92, No. 3, 771–778 (1970).

  332. 332.

    E. F. Robertson, “On certain subgroups of GL(R),” J. Algebra,15, No. 3, 293–300 (1970).

  333. 333.

    E. F. Robertson, “Some properties of a subgroup of SpΩ (R),” J. London Math. Soc.,4, No. 1, 65–78 (1971).

  334. 334.

    M. Rosati, “Sottogruppi congruenciali principali del gruppo simplettico modulare,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. e Natur.,47, Nos. 3–4, 167–172 (1969) (1970).

  335. 335.

    M. Rosati, “Sul gruppo modulare,” Rend. Semin. Mat. e Fis. Milano,41, 143–149 (1971).

  336. 336.

    J. G. Rosenstein, “On GL2(R) where R is a Boolean ring,” Can. Math. Bull.,15, No. 2, 263–275 (1972).

  337. 337.

    Masahiko Saito, “Representations unitaires du groupe modulaire,” Proc. Jpn. Acad.,48, No. 6, 381–383 (1972).

  338. 338.

    J. H. Sampson, “Sous-groupes conjugués d'un groupe linéaire,” Ann. Inst. Fourier,26, No. 2, 1–6 (1976).

  339. 339.

    R. J. san Sancho, “Formas canonicas en el grupo Euclidiano,” Actas 10a Reun. Anu. Mat. Esp. Laguna, 1969, 233–236 (1972).

  340. 340.

    J. E. Schneider, “Orthogonal groups of nonsingular forms of higher degree,” J. Algebra,27, No. 1, 112–116 (1973).

  341. 341.

    S. K. Sehgal and H. Zassenhaus, “The Frattini subgroups of linear Noetherian groups,” J. Number Theory,3, No. 1, 111–114 (1971).

  342. 342.

    J.-P. Serre, “Amalgames et points fixes,” Lect. Notes Math.,372, 633–640 (1974).

  343. 343.

    J.-P. Serre, “Le problème des groupes de congruence pour SL2,” Ann. Math.,92. No. 3, 489–527 (1970).

  344. 344.

    R. W. Sharpe, “On the structure of the unitary Steinberg group,” Ann. Math.,96, No. 3, 444–479 (1972).

  345. 345.

    D. A. Sibley, “Certain finite linear groups of prime degree,” J. Algebra,32, No. 2, 286–316 (1974).

  346. 346.

    D. A. Sibley, “Finite linear groups with a strongly self-centralizing Sylow subgroup,” J. Algebra,36, No. 1, 158–166 (1975).

  347. 347.

    J. M. Smith, “The factorization of a matrix as a commutator of two matrices,” J. Res. Nat. Bur. Stand.,B78, No. 3, 109–112 (1974); II, No. 2, 319–531 (1975).

  348. 348.

    R. E. Solazzi, “Isomorphism theory of congruence groups,” Bull. Am. Math. Soc.,77, No. 1, 164–168 (1971).

  349. 349.

    R. E. Solazzi, “On the isomorphisms between certain congruence groups,” Proc. Am. Math. Soc.,35, No. 2, 405–410 (1972); II, Can. J. Math.,25, No. 5, 1006–1014 (1973).

  350. 350.

    R. E. Solazzi, “The automorphisms of certain subgroups of PGLn(V),” Ill. J. Math.,16, No. 2, 330–348 (1972).

  351. 351.

    R. E. Solazzi, “The automorphisms of the symplectic congruence groups,” J. Algebra,21, No. 1, 91–102 (1972).

  352. 352.

    C. Soulé, “Cohomologie de SL3 (Z),” C. R. Acad. Sci.,280, No. 5, A251-A254 (1975).

  353. 353.

    J. B. Southcott, “Two-variable bases for the laws of var PSL(2, 2n) and related topics,” Bull. Austral. Math. Soc.,13, No. 2, 313–314 (1975).

  354. 354.

    E. Spence, “m-Symplectic matrices,” Trans. Am. Math. Soc.,170, 447–457 (1972).

  355. 355.

    E. Spence, “The index of a subgroup of the symplectic modular group,” Mich. Math. J.,19, No. 1, 57–64 (1972).

  356. 356.

    U. Spengler, “Relationen zwischen symplektischen Transvektionen,” J. Reihe Angew. Math.,274–275, 141–149 (1975).

  357. 357.

    U. Spengler and H. Wolff, “Die Länge einer symplektischen Abbildung,” J. Reine Angew. Math.,274–275, 150–157 (1975).

  358. 358.

    E. Spiegel, “Automorphisms of unitary groups,” J. Algebra,19, No. 4, 541–546 (1971).

  359. 359.

    R. Steinberg, “Abstract homomorphisms of simple algebraic groups (after A. Borel and J. Tits),” Lect. Notes Math.,383. 307–326 (1974).

  360. 360.

    W. W. Stothers, “Subgroups of the modular group,” Proc. Cambridge Phil. Soc.,75, No. 2, 139–153 (1974).

  361. 361.

    J. R. Strooker, “Le groupe fondamental des groupes linéaires GLn,” Sémin. P. Dubreil, Algébre Univ. Pierre et Marie Curie,28, 17/1–17/2 (1974–1975).

  362. 362.

    J. B. Sullivan, “Automorphisms of affine unipotent groups in positive characteristic,” J. Algebra,26, No. 1, 140–151 (1973).

  363. 363.

    Kazuo Suzuki, “On parabolic subgroups of Chevalley groups over local rings,” Tohoku Math. J.,28, No. 1, 57–66 (1976).

  364. 364.

    R. G. Swan, “Generators and relations for certain special linear groups,” Adv. Math.,6, No. 1, 1–77 (1971).

  365. 365.

    Ken-Ichi Tahara, “On the finite subgroups of GL(3, Z),” Nagoya Math. J.,41, 169–209 (1971).

  366. 366.

    K. Takeuchi, “Subgroups of the modular group,” J. Fac. Sci. Univ. Tokyo, Sec. IA,20, No. 1, 171–185 (1973).

  367. 367.

    J. G. Thompson, “Quadratic pairs,” Actes Congr. Int. Mathématiciens, 1970, Part 1 (1971), pp. 375–376.

  368. 368.

    M. W. Thomson, “Subgroups of finitely presented solvable linear groups,” Trans. Am. Math. Soc.,231, No. 1, 133–142 (1977).

  369. 369.

    J. Tits, “Free subgroups in linear groups,” J. Algebra,20, No. 2, 250–270 (1972).

  370. 370.

    J. Tits, “Homomorphismes ϱ abstraits 》 de groupes de Lie,” Symp. Math. Ist. Naz. Alta Mat. Conv. Nov.-Dic., 1972,13, 479–499 (1974).

  371. 371.

    J. Tits, “Homomorphismes et automorphismes ϱ abstraits 》 de groupes algébriques et arithmetiques,” Actes Congr. Int. Mathématiciens, 1970, Part 2, Paris (1971), pp. 349–355.

  372. 372.

    J. Tits, “Systémes generateurs de groupes de congruence,” C. R. Acad. Sci.,283, No. 9, A693-A695 (1976).

  373. 373.

    E. B. Vinberg, “Some arithmetical discrete groups in Lobacevskii spaces,” Discrete Subgroups Lie Groups and Appl. Moduli, Pap. Bombay Colloq., 1973, Oxford (1975), pp. 323–348.

  374. 374.

    G. Vranceanu, “Grupuri discrete ortogonale,” Stud. si Cerc. Math.,23, No. 2, 327–331 (1971).

  375. 375.

    D. B. Wales, “Finite linear groups of degree seven. I,” Can. J. Math.,21, No. 5, 1042–1056 (1969); II. Pac. J. Math.,34, No. 1, 207–235 (1970).

  376. 376.

    D. B. Wales, “Finite linear groups of prime degree,” Can. J. Math.,21, No. 5, 1025–1041 (1969).

  377. 377.

    C. T. C. Wall, “On the commutator subgroups of certain unitary groups,” J. Algebra,27, No. 2, 306–310 (1973).

  378. 378.

    J. W. Wamsley, “On certain pairs of matrices which generate free groups,” Bull. London Math. Soc.,5, No. 1, 109–110 (1973).

  379. 379.

    S. P. Wang, “On Jordan's theorem for torsion groups,” J. Algebra,31, No. 3, 514–516 (1974).

  380. 380.

    S. P. Wang, “On solvable linear groups,” J. Algebra,29, No. 3, 401–413 (1974).

  381. 381.

    B. A. F. Wehrfritz, “Finite central height in linear groups,” Linear Algebra Appl.,17, No. 1, 59–64 (1977).

  382. 382.

    B. A. F. Wehrfritz, “Generalized free products of linear groups,” Proc. London Math. Soc.,27, No. 3, 402–424 (1973).

  383. 383.

    B. A. F. Wehrfritz, Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices (Ergeb. Math., 76), Vol. XIV, E. A. Springer-Verlag, Berlin (1973).

  384. 384.

    B. A. F. Wehrfritz, “Isolators in linear groups,” Bull. London Math. Soc.,6, No. 3, 336 (1974).

  385. 385.

    B. A. F. Wehrfritz, “On the holomorphs of soluble groups of finite rank,” J. Pure Appl. Algebra,4, No. 1, 55–69 (1974).

  386. 386.

    B. A. F. Wehrfritz, “Remarks on centrality and cyclicity in linear groups,” J. Algebra,18, No. 2, 229–236 (1971).

  387. 387.

    B. A. F. Wehrfritz, “Representations of holomorphs of group extensions with Abelian kernels,” Math. Proc. Cambridge Phil. Soc.,78, No. 3, 357–368 (1975).

  388. 388.

    B. A. F. Wehrfritz, “Supersoluble and locally supersoluble linear groups,” J. Algebra,17, No. 1, 41–58 (1971).

  389. 389.

    B. A. F. Wehrfritz, “2-Generator conditions in linear groups,” Arch. Math.,22, No. 3, 237–240 (1971).

  390. 390.

    A. Wei, “Linear transformations preserving the real orthogonal group,” Can. J. Math.,27, No. 3, 561–572 (1975).

  391. 391.

    A. Whittemore, “On representations of the group of Listing's knot by subgroups of SL(2,C),” Proc. Am. Math. Soc.,40, No. 2, 378–382 (1973).

  392. 392.

    M. J. Wicks, “Presentations of some classical groups,” Bull. Austral. Math. Soc.,13, No. 1, 1–12 (1975).

  393. 393.

    J. S. Wilson, “An\(\overline {SI}\)-group which is not an\(\overline {SN}\)-group,” Bull. London Math. Soc.,5, No. 14, 192–196 (1973).

  394. 394.

    J. S. Wilson, “On characteristically simple groups,” Math. Proc. Cambridge Phil. Soc.,80, No. 1, 19–35 (1976).

  395. 395.

    J. W. Wilson, “On generalized soluble groups,” Lect. Notes Math.,372, 719–729 (1974).

  396. 396.

    J. S. Wilson, “On normal subgroups of\(\overline {SI}\)-groups,” Arch. Math.,25, No. 6, 574–577 (1974).

  397. 397.

    J. W. Wilson, “\(\overline {SN}\)-Groups with non-Abelian free subgroups,” J. London Math. Soc.,7, No. 4, 699–708 (1974).

  398. 398.

    J. S. Wilson, “The normal and subnormal structure of general linear groups,” Proc. Cambridge Phil. Soc.,71, No. 2, 163–177 (1972).

  399. 399.

    D. L. Winter, “Finite linear groups containing an irreducible solvable normal subgroup,” Proc. Am. Math. Soc.,25, No. 3, 716 (1970).

  400. 400.

    D. L. Winter, “On finite solvable linear groups,” Ill. J. Math.,15, No. 3, 425–428 (1971).

  401. 401.

    D. L. Winter, “p-Solvable linear groups of finite order,” Trans. Am. Math. Soc.,157, 155–160 (1971).

  402. 402.

    K. Wohlfahrt, 》On some representations of SL(2,Z),” Ill. J. Math.,15, No. 1, 144–149 (1971).

  403. 403.

    J. Wolfart and J. Spilker, “Untergruppen der GL2, welche durch homogene lineare Kongruenzen definiert sind,” Manuscr. Math.,14, No. 4, 349–378 (1975).

  404. 404.

    W. J. Wong, “Generators and relations for classical groups,” J. Algebra,32, No. 3, 529–553 (1974).

  405. 405.

    C. R. B. Wright, “On primitive solvable linear groups,” Can. J. Math.,23, No. 4, 679–685 (1971).

  406. 406.

    D. Wright, “The amalgamated free product structure of GL2(K[X1,..., Xn]),” Bull. Am. Math. Soc.,82, No. 5, 724–726 (1976).

  407. 407.

    Akiko Yoshioka, “Structure du groupe des similitudes orthogonales (caractéristique ≠2),” Proc. Jpn. Acad.,48, No. 6, 347–352 (1972).

  408. 408.

    R. Zarrow, “A canonical form for symmetric and skewsymmetric extended symplectic modular matrices with applications to Reimann surface theory,” Trans. Am. Math. Soc.,204, 207–227 (1975).

  409. 409.

    R. Zimmert, “Zur SL2 der ganzen Zahlen eines imaginär-quadratischen Zahlkörpers,” Invent. Math.,19, No. 1, 73–81 (1973).

  410. 410.

    N. M. Zumoff, “Characters of F2 represented in Sp(4,R),” J. Algebra,32, No. 2, 317–327 (1974).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Algebra, Topologiya, Geometriya, Vol. 16, pp. 35–89, 1978.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merzlyakov, Y.I. Linear groups. J Math Sci 14, 887–921 (1980). https://doi.org/10.1007/BF01097780

Download citation

Keywords

  • Linear Group
  • Solvable Linear Group