An elementary method in algebraic number theory

  • S. A. Stepanov
Doctoral Dissertations


Number Theory Algebraic Number Algebraic Number Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. L. Lagrange, Oevres, T. 3, Gauthier-Villars, Paris (1896), pp. 189–201.Google Scholar
  2. 2.
    C. F. Gauss, Werke, Bd. 2, Göttingen (1863).Google Scholar
  3. 3.
    E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen. II,” Math. Z.,19, 207–246 (1924).Google Scholar
  4. 4.
    H. Hasse, “Abstrakte Begründung der komplexen Multiplication und Riemannsche Vermutung in Funktionenkörper,” Abhand. Math. Sem. Univ. Hamburg,10, 325–348 (1934).Google Scholar
  5. 5.
    H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper. I–III,” J. Reine Ang. Math.,175, 55–62, 69–88, 193–208 (1936).Google Scholar
  6. 6.
    Yu. I. Manin, “On congruences of the third degree with respect to a prime modulus,” Izv. Akad. Nauk SSSR, Ser. Mat.,20, 673–678 (1956).Google Scholar
  7. 7.
    A. Weil, “Sur les courbes algébriques et les variétés que s'en déduisent,” Act. Sci. Ind., 1041, Hermann, Paris (1948).Google Scholar
  8. 8.
    A. Weil, “On some exponential sums,” Proc. Nat. Acad. Sci.,34, No. 5, 204–207 (1948).Google Scholar
  9. 9.
    L. Carlitz and S. Uchiyama, “A bound for exponential sums,” Duke Math. J.,24, No. 1, 37–41 (1957).Google Scholar
  10. 10.
    L. Carlitz, “Kloosterman sums and finite field extensions,” Acta. Arithm.,16, No. 2, 179–193 (1969).Google Scholar
  11. 11.
    E. Bombieri, “On exponential sums in finite fields,” Am. J. Math.,88, No. 1, 71–105 (1966).Google Scholar
  12. 12.
    G. I. Perel'muter, “On some character sums,” Usp. Mat. Nauk,18, No. 2, 145–149 (1963).Google Scholar
  13. 13.
    M. Eichler, Einführung in die Theorie der algebraischen Zahlen und Funktionen, Basel-Stuttgart (1963).Google Scholar
  14. 14.
    S. Lang, Abelian Varieties, Wiley-Interscience, New York (1959).Google Scholar
  15. 15.
    A. G. Postnikov, “Ergodic problems in the theory of congruence and theory of Diophantine approximations,” Tr. Mat. Inst. Akad. Nauk SSSR,82 (1966).Google Scholar
  16. 16.
    H. M. Stark, “On the Riemann hypothesis in hyperelliptic function fields,” Proc. Symp. Pure Math.,24, 285–302 (1973).Google Scholar
  17. 17.
    N. M. Korobov, “An estimate for a sum of Legendre symbols,” Dokl. Akad. Nauk SSSR,196, No. 4, 764–767 (1971).Google Scholar
  18. 18.
    D. A. Mit'kin, “An estimate for a sum of Legendre symbols of polynomials of even degree,” Mat. Zametki,14, No. 1, 73–81 (1973).Google Scholar
  19. 19.
    W. M. Schmidt, “Zur Methode von Stepanov,” Acta. Arithm.,24, No. 4, 347–368 (1973).Google Scholar
  20. 20.
    W. M. Schmidt, “A lower bound for the number of solutions of equations over finite fields,” J. Number Theory,6, 448–480 (1974).Google Scholar
  21. 21.
    E. Bombieri, “Counting points on curves over finite fields (after S. A. Stepanov),” Sém. Bourbaki, Vol. 25, No. 430 (1972–73), pp. 234–241.Google Scholar
  22. 22.
    S. Lang and A. Weil, “Number of points of varieties in finite fields,” Amer. J. Math.,76, No. 4, 819–827 (1954).Google Scholar
  23. 23.
    S. A. Stepanov, “On the number of points of a hyperelliptic curve over a finite prime field,” Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 5, 1171–1181 (1969).Google Scholar
  24. 24.
    S. A. Stepanov, “Elementary method in the theory of congruences for a prime modulus,” Acta. Arithm.,17, No. 3, 231–247 (1970).Google Scholar
  25. 25.
    S. A. Stepanov, “An elementary proof of the Hasse-Weil theorem for hyperelliptic curves,” J. Number Theory,4, No. 2, 118–143 (1972).Google Scholar
  26. 26.
    S. A. Stepanov, “On an estimate for rational trigonometric sums with prime denominator,” Tr. Mat. Inst. Akad. Nauk SSSR,112, 346–372 (1971).Google Scholar
  27. 27.
    S. A. Stepanov, “Congruences with two unknowns,” Izv. Akad. Nauk SSSR, Ser. Mat.,36, 683–711 (1972).Google Scholar
  28. 28.
    S. A. Stepanov, “A constructive method in the theory of equations over finite fields,” Tr. Mat. Inst. Akad. Nauk SSSR,122, 237–246 (1973).Google Scholar
  29. 29.
    S. A. Stepanov, “Rational points of algebraic curves over finite fields,” in: Current Problems in Analytic Number Theory [in Russian], Minsk (1974), pp. 223–243.Google Scholar
  30. 30.
    S. A. Stepanov, “An elementary method in the theory of equations over finite fields,” in: Proc. Int. Cong. Mathematicians, Vancouver (1974), pp. 383–391.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • S. A. Stepanov
    • 1
  1. 1.V. A. Steklov Mathematics InstituteAcademy of Sciences of the USSRUSSR

Personalised recommendations