Journal of Soviet Mathematics

, Volume 44, Issue 1, pp 1–5 | Cite as

Relaxation methods of minimization of pseudoconvex functions

  • A. I. Korablev


Relaxation Method Pseudoconvex Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. G. Karmanov, “Convergence estimates of iterative minimization methods,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 1, 3–14 (1974).Google Scholar
  2. 2.
    V. G. Karmanov, “An approach to investigating the convergence of relaxation processes of minimization,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 6, 1581–1585 (1974).Google Scholar
  3. 3.
    V. G. Karmanov, Mathematical Programming [in Russian], Nauka, Moscow (1975).Google Scholar
  4. 4.
    Ya. I. Zabotin and A. I. Korabalev, “Pseudoconvex functionals and their extremal properties,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4 (143), 27–31 (1974).Google Scholar
  5. 5.
    B. T. Polyak, “Existence and convergence theorems of minimizing sequences in extremum problems with constraints,” Dokl. Akad. Nauk SSSR,166, No. 2, 287–290 (1966).Google Scholar
  6. 6.
    V. F. Dem'yanov and V. N. Malozemov, An Introduction to Minimax [in Russian], Nauka, Moscow (1972).Google Scholar
  7. 7.
    A. B. Pevnyi, “The convergence rate of some minimax and saddle point seeking methods,” Kibernetika, No. 4, 95–98 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. I. Korablev

There are no affiliations available

Personalised recommendations