Journal of Soviet Mathematics

, Volume 55, Issue 1, pp 1401–1450

Nonlocal symmetries. Heuristic approach

  • I. Sh. Akhatov
  • R. K. Gazizov
  • N. Kh. Ibragimov
Article

Abstract

A constructive method for constructing nonlocal symmetries of differential equations based on the Lie—Bäcklund theory of groups is developed. The concept of quasilocal symmetries is introduced. With the help of this method nonlocal symmetries of differential equations of the type of nonlinear thermal conductivity and gas dynamics are studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. K. Andreev and A. A. Rodionov, “Group analysis of equations of planar flows of an ideal fluid in Lagrangian coordinates”, Dokl. Akad. Nauk SSSR,298, No. 6, 1358–1361 (1988).Google Scholar
  2. 2.
    V. K. Andreev and A. A. Rodionov, “Group classification and exact solutions of equations of planar and rotationally-symmetric flow of an ideal fluid in Lagrangian coordinates”, Differents. Uravnen., No. 9, 1577–1586 (1988).Google Scholar
  3. 3.
    J. Astarita and J. Marucci, Foundations of Hydromechanics of Non-Newtonian Fluids [Russian translation], Mir, Moscow (1978).Google Scholar
  4. 4.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Group classification of the equations of nonlinear filtration”, Dokl. Akad. Nauk SSSR,293, No. 5, 1033–1035 (1987).Google Scholar
  5. 5.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Quasilocal symmetries of equations of the type of nonlinear thermal conductivity”, Dokl. Akad. Nauk SSSR,295, No. 1, 75 (1987).Google Scholar
  6. 6.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Bäcklund transformations and nonlocal symmetries”, Dokl. Akad. Nauk SSSR,297, No. 1, 11–14 (1987).Google Scholar
  7. 7.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Quasilocal symmetries of equations of mathematical physics”, in: Mathematical Modeling. Nonlinear Differential Equations of Mathematical Physics [in Russian], Nauka, Moscow (1987), pp. 22–56.Google Scholar
  8. 8.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Group properties and exact solutions of equations of nonlinear filtration”, in: Numerical Methods of Solution of Problems of Filtration of a Multiphase Incompressible Fluid [in Russian], Novosibirsk (1987), pp. 24–27.Google Scholar
  9. 9.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Basic types of invariant equations of one-dimensional gas-dynamics”, Preprint, Inst. Applied Math. of the Acad. of Sciences of the USSR, Moscow (1988).Google Scholar
  10. 10.
    G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Nonstationary Filtration of a Fluid and Gas [in Russian], Nedra, Moscow (1972).Google Scholar
  11. 11.
    A. A. Berezovskii, Lectures on Nonlinear Boundary Problems of Mathematical Physics [in Russian], Parts I and II, Naukova Dumka, Kiev (1976).Google Scholar
  12. 12.
    N. N. Bogolyubov, “Question of model Hamiltonian in the theory of superconductivity”, in: Selected Works in Three Volumes [in Russian], Vol. 3, Naukova Dumka Kiev (1971), pp. 110–173.Google Scholar
  13. 13.
    A. M. Vinogradov and I. S. Krasil'shchik, “A method of calculation of higher symmetries of nonlinear evolution equations and nonlocal symmetries,” Dokl. Akad. Nauk SSSR,253, No. 6, 1289–1293 (1980).Google Scholar
  14. 14.
    A. M. Vinogradov and I. S. Krasil'shchik, “Theory of nonlocal symmetries of nonlinear partial differential equations”, Dokl. Akad. Nauk SSSR,275, No. 5, 1044–1049 (1984).Google Scholar
  15. 15.
    A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations [in Russian], Nauka, Moscow (1986).Google Scholar
  16. 16.
    V. S. Vladimirov and I. V. Volovich, “Local and nonlocal flows for nonlinear equations”, Teor. Mat. Fiz.,62, No. 1, 3–29 (1985).Google Scholar
  17. 17.
    V. S. Vladimirov and I. V. Volovich, “Conservation laws for nonlinear equations”, Usp. Mat. Nauk,40, No. 4, 17–26 (1985).Google Scholar
  18. 18.
    R. K. Gazizov, “Contact transformations of equations of the type of nonlinear filtration”, in: Physicochemical Hydrodynamics. Inter-University Scientific Collection [in Russian], Izdat. Bashk. Gos. Univ., Ufa (1987), pp. 38–41.Google Scholar
  19. 19.
    N. Kh. Ibragimov, “Theory of Lie—Bäcklund transformation groups”, Mat. Sborn.,109, No. 2, 229–253 (1979).Google Scholar
  20. 20.
    N. Kh. Ibravimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  21. 21.
    N. Kh. Ibragimov and A. B. Shabat, “Korteweg-de Vries equation from the group point of view”, Dokl. Akad. Nauk SSSR,244, No. 1, 57–61 (1979).Google Scholar
  22. 22.
    O. V. Kaptsov, “Extension of symmetries of evolutional equations”, Dokl. Akad. Nauk SSSR,262, No. 5, 1056–1059 (1982).Google Scholar
  23. 23.
    E. G. Kirnasov, “Wohlquist-Estabrook type coverings over the equation of thermal conductivity”, Mat. Zametki,42, No. 3, 422–434 (1987).Google Scholar
  24. 24.
    B. G. Konopel'chenko and V. G. Mokhnachev, “Group analysis of differential equations”, Yadernaya Fiz.,30, No. 2, 559–567 (1979).Google Scholar
  25. 25.
    V. V. Kornyak, “Application of a computer to study the symmetries of some equations of mathematical physics”, in: Group-Theoretic Studies of Equations of Mathematical Physics [in Russian], Inst. Mat. Akad. Nauk UkrSSR, Kiev (1985), pp. 114–119.Google Scholar
  26. 26.
    E. V. Lenskii, “Group properties of equations of motion of a nonlinear viscoplastic medium”, Vestn. Mosk. Gos. Univ. (MGU), Mat., Mekhan., No. 5, 116–125 (1966).Google Scholar
  27. 27.
    L. V. Ovsyannikov, “Groups and group-invariant solutions of differential equations”, Dokl. Akad. Nauk SSSR,118, No. 3, 439–442 (1958).Google Scholar
  28. 28.
    L. V. Ovsyannikov, “Group properties of equations of thermal conductivity”, Dokl. Akad. Nauk SSSR,125, No. 3, 492–495 (1959).Google Scholar
  29. 29.
    L. V. Ovsyannikov, Group Properties of Differential Equations [in Russian], Izdat. Sib. Otd. (SO) Akad. Nauk SSSR, Novosibirsk (1962).Google Scholar
  30. 30.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  31. 31.
    M. I. Petrashen' and E. D. Trifonov, Application of Group Theory to Quantum Mechanics [in Russian], Nauka, Moscow (1967).Google Scholar
  32. 32.
    V. V. Pukhnachev, “Evolution equations and Lagrangian coordinates”, in: Dynamics of Continuous Media in the Seventies [in Russian], Novosibirsk (1985), pp. 127–141.Google Scholar
  33. 33.
    V. V. Pukhnachev, “Equivalence transformations and hidden symmetries of evolution equations”, Dokl. Akad. Nauk SSSR,294, No. 3, 535–538 (1987).Google Scholar
  34. 34.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Application to Gas Dynamics [in Russian], Nauka, Moscow (1978).Google Scholar
  35. 35.
    S. R. Svirshchevskii, “Group properties of a model of thermal transport taking into account relaxation of thermal flow”, Preprint, Inst. Prikl. Mat. Akad. Nauk SSSR, No. 105 (1988).Google Scholar
  36. 36.
    V. A. Florin, “Some of the simplest nonlinear problems of consolidation water-saturated earth media”, Izv. Akad. Nauk SSSR, OTN, No. 9, 1389–1402 (1948).Google Scholar
  37. 37.
    V. A. Fok, “Hydrogen atom and non-Eulidean geometry”, Izv. Akad. Nauk SSSR, VII. Seriya Otdel. Mat. Estestv. Nauk, No. 2, 169–179 (1935).Google Scholar
  38. 38.
    V. I. Fushchich, “Supplementary invariances of relativistic equations of motion”, Teor. Mat. Fiz.,7, No. 1, 3–12 (1971).Google Scholar
  39. 39.
    V. I. Fushchich, “A new method of study of group properties of the equations of mathematical physics”, Dokl. Akad. Nauk SSSR,246, No. 4, 846–850 (1979).Google Scholar
  40. 40.
    V. I. Fushchich and V. V. Kornyak, “Realization on a computer of an algorithm for calculating nonlocal symmetries for Dirac type equations”, Preprint, Inst. Mat. Akad. Nauk UkrSSR, 85.20, No. 20, Kiev (1985).Google Scholar
  41. 41.
    N. G. Khor'kova, “Conservation laws and nonlocal symmetries”, Mat. Zametki,44, No. 1, 134–145 (1988).Google Scholar
  42. 42.
    W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, Vol. 1 (1965), Vol. 2 (1972).Google Scholar
  43. 43.
    G. Bluman and S. Kumei, “On the remarkable nonlinear diffusion equation∂/∂x[a(u+b)−2∂u/∂x]−∂u/∂t=0,” J. Math. Phys.,21, No. 5, 1019–1023 (1980).Google Scholar
  44. 44.
    J. R. Burgan, A. Munier, M. R. Felix, and E. Fijalkow, “Homology and the nonlinear heat diffusion equation”, SIAM J. Appl. Math.,44, No. 1, 11–18 (1984).Google Scholar
  45. 45.
    J. D. Cole, “On a quasilinear parabolic equation used in aerodynamics”, Quart. Appl. Math.,9, 225–236 (1951).Google Scholar
  46. 46.
    E. Hopf, “The partial differential equation ut+uux=μuxx”, Commun. Pure. Appl. Math.,3, 201–230 (1950).Google Scholar
  47. 47.
    N. H. Ibragimov, “Sur l'equivalence des equations d'evolution qui admettent une algebre de Lie—Bäcklund infinie”, C. R. Acad. Sci. Ser. 1, Paris,293, No. 14, 657–660 (1981).Google Scholar
  48. 48.
    S. Lie, “Begründung einer Invariantentheorie der Berührungstransformationen”, Math. Ann.,8, No. 2, 215–228 (1874).Google Scholar
  49. 49.
    A. Munier, J. R. Burgan, J. Gutierrez, E. Fijalkow, and M. R. Feliz, “Group transformations and the nonlinear heat diffusion equation”, SIAM J. Appl. Math.,40, No. 2, 191–207 (1981).Google Scholar
  50. 50.
    A. Oron and P. Rosenau, “Some symmetries of the nonlinear heat and wave equations”, Phys. Lett. A,118, No. 4, 172–176 (1986).Google Scholar
  51. 51.
    L. V. Ovsjannikov, “Some problems arising in group analysis of differential equations”, in: Proc. Symp. Symmetry, Similarity and Group-Theory. Methods in Mechanics, Calgary (1974), pp. 181–202.Google Scholar
  52. 52.
    K. Kiso, “Pseudopotentials and symmetries of evolution equations”, Hokkaido Math. J.,18, No. 1, 125–136 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • I. Sh. Akhatov
  • R. K. Gazizov
  • N. Kh. Ibragimov

There are no affiliations available

Personalised recommendations