Fluid Dynamics

, Volume 20, Issue 1, pp 85–92 | Cite as

Propagation of nonlinear Alfvén surface waves along a tangential magnetohydrodynamic discontinuity in an incompressible fluid

  • M. S. Ruderman
Article

Abstract

The paper considers the propagation of low-amplitude nonlinear waves over a surface of magnetic discontinuity. An equation for these waves is derived. The evolution of a sinusoidal perturbation is investigated. The discontinuity formation time is numerically determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. Roberts, “Wave propagation in a magnetically structured atmosphere. I. Surface waves at a magnetic interface,” Sol. Phys.,69, 27 (1981).Google Scholar
  2. 2.
    B. Roberts, “Wave propagation in a magnetically structured atmosphere. II. Waves in a magnetic slab,” Sol. Phys.,69, 39 (1981).Google Scholar
  3. 3.
    P. M. Edwin and B. Roberts, “Wave propagation in a magnetically structured atmosphere. III. The slab in a magnetic environment,” Sol. Phys.,76, 239 (1982).Google Scholar
  4. 4.
    H. C. Spruit, “Propagation speeds and acoustic damping of waves in magnetic flux tubes,” Sol. Phys.,75, 3 (1982).Google Scholar
  5. 5.
    I. C. Rae and B. Roberts, “Pulse propagation in a magnetic flux tube,” Astrophys. J.,256, 761 (1982).Google Scholar
  6. 6.
    I. C. Rae and B. Roberts, “Wave diagrams for I.fflD modes in a magnetically structured atmosphere,” Sol. Phys.,84, 99 (1983).Google Scholar
  7. 7.
    E. N. Parker, “The nature of the sunspot phenomenon. II. Internal overstable modes,” Sol. Phys.,37, 127 (1974).Google Scholar
  8. 8.
    B. E. Gordon and J. V. Hollweg, “Collisional damping of surface waves in the solar corona,” Astrophys. J.,266, 373 (1933).Google Scholar
  9. 9.
    B. Roberts and A. Mangeney, “Solitons in solar magnetic flux tubes,” Mon. Not. R. Astron. Soc.,198, 7P (1982).Google Scholar
  10. 10.
    H. Ono, “Algebraic solitary waves in stratified fluids,” J. Phys. Soc. Jpn.,39, 1082 (1975).Google Scholar
  11. 11.
    O. V. Rudenko and S. I. Soluyan, Theoretical Principles of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. S. Ruderman
    • 1
  1. 1.Moscow

Personalised recommendations