Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Combinatorial problems of probability theory

  • 58 Accesses

  • 4 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. V. Balakin, “On random matrices,” Teor. Veroyatn. i Primen.,12, No. 2, 346–353 (1967).

  2. 2.

    G. V. Balakin, “The distribution of the rank of random matrices over finite fields,” Teor. Veroyatn. Primen.,13, No. 4, 631–641 (1968).

  3. 3.

    P. F. Belyaev, “On the probability of nonoccurrence of a given number of outcomes,” Teor. Veroyatn. i Primen.,9, No. 3, 541–547 (1964).

  4. 4.

    P. F. Belyaev, “On the probability of nonoccurrence of a given number of s-chains in multiple Markov chains,” Teor. Veroyatn. i Primen.,10, No. 3, 547–551 (1965).

  5. 5.

    P. F. Belyaev, “On the joint distribution of frequencies of long s-chains in the multinomial scheme with equiprobable outcomes,” Teor. Veroyatn. i Primen.,14, No. 3, 540–546 (1969).

  6. 6.

    P. F. Belyaev, “On the distribution of the statistics of the strongest criterion for two simple hypotheses in multiple Markov chains,” Teor. Veroyatn. i Primen.,12, No. 4, 741–746 (1967).

  7. 7.

    Yu. V. Bolotnikov, “Convergence to Gaussian and Poisson process of the quantitiesμ r (n) in the classical occupancy problem,” Teor. Veroyatn. i Primen.,13, No. 1, 39–50 (1968).

  8. 8.

    Yu. V. Bolotnikov, “Convergence to the Gaussian process of the number of empty cells in the classical problem of distributing particles among cells,” Mat. Zametki,4, No. 1, 97–103 (1968).

  9. 9.

    Yu. V. Bolotnikov, “Limiting processes in the nonequiprobable scheme of distributing particles among cells,” Teor. Veroyatn. i Primen.,13, No. 3, 534–542 (1968).

  10. 10.

    A. M. Vershik and A. A. Shmidt, “Symmetric groups of high degree,” Dokl. Akad. Nauk SSSR,206, No. 2, 269–272 (1972).

  11. 11.

    I. I. Viktorova, “On the asymptotic behavior of the maximum in the equiprobable polynomial scheme,” Mat. Zametki,5, No. 3, 305–316 (1969).

  12. 12.

    I. I. Viktorova and B. A. Sevast'yanov, “On the limiting behavior of the maximum in the polynomial scheme,” Mat. Zametki,1, No. 3, 331–338 (1967).

  13. 13.

    I. I. Viktorova and V. P. Chistyakov, “Some generalizations of the criterion of empty cells,” Teor. Veroyatn. i. Primen.,11, No. 2, 306–313 (1966).

  14. 14.

    I. I. Viktorova and V. P. Chistyakov, “Asymptotic normality in the occupancy problem with arbitrary probabilities of landing in a cell,” Teor. Veroyatn. i Primen.,10, No. 1, 162–167 (1965).

  15. 15.

    J. Hajék and Z. Sidak, Theory of Rank Tests, Academic Press (1967).

  16. 16.

    A. I. Galushkin, B. P. Tyukhov, and V. G. Chigrinov, “On the convergence of a method of random search in finding local and global extrema of a multiextremal function,” Tr. Mosk. Inst. Élektron. Mahsinostr., No. 23, 205–209 (1971).

  17. 17.

    I. I. Gikhman, “Some limit theorems for conditional distributions,” Dokl. Akad. Nauk SSSR,91, No. 5, 1003–1006 (1953).

  18. 18.

    I. I. Gikhman, “On some limit theorems for conditional distributions and related problems of mathematical statistics,” Ukr. Mat. Zh.,5, No. 4, 413–433 (1953).

  19. 19.

    V. L. Goncharov, “On the distribution of cycles in permutations,” Dokl. Akad. Nauk. SSSR,35, No. 9, 299–301 (1942).

  20. 20.

    V. L. Goncharov, “On combinatorics,” Izv. Akad. Nauk SSR Ser. Matem.,8, No. 1, 3–48 (1944).

  21. 21.

    A. A. Grusho, “Random mappings of restricted multiplicity,” Teor. Veroyatn. i Primen.,17, No. 3, 440–449 (1972).

  22. 22.

    S. A. Ivankov, “On the number of repetitions in Markov chains,” Teor. Veroyatn. i Primen.,10, No. 3, 557–560 (1965).

  23. 23.

    G. I. Ivchenko, “On limiting distributions of order statistics of the polynomial scheme,” Teor, Veroyatn. i Primen.,16, No. 1, 94–107 (1971).

  24. 24.

    G. I. Ivchenko, “Limit theorems in the occupancy problem,” Teor. Veroyatn. i Primen.,16, No. 2, 292–305 (1971).

  25. 25.

    G. I. Ivchenko and Yu. I. Medvedev, “Some multidimensional theorems in the classical occupancy problem,” Teor. Veroyatn. i Primen.,10, No. 1, 156–162 (1965).

  26. 26.

    G. I. Ivchenko and Yu. I. Medvedev, “The asymptotic behavior of the number of sets of particles in the classical occupancy problem,” Teor. Veroyatn. i Primen.,11, No. 4, 701–708 (1966).

  27. 27.

    G. I. Ivchenko, Yu. I. Medvedev, and B. A. Sevast'yanov, “The distribution of a random number of particles in cells,” Mat. Zametki,1, No. 5, 549–554 (1967).

  28. 28.

    I N. Kovalenko, “On a limit theorem for determinants in the class of Boolean functions,” Dokl. Akad. Nauk SSSR, No. 3, 517–519 (1965).

  29. 29.

    I. N. Kovalenko, “On the distribution of the linear rank of a random matrix,” Teor. Veroyatn. i Primen.,17, No. 2, 354–359 (1972).

  30. 30.

    I. N. Kovalenko, “On the limiting distribution of the number of solutions of a random system of linear equations in the class of Boolean functions,” Teor. Veroyatn. i Primen.,12, No. 1, 51–61 (1967).

  31. 31.

    M. V. Kozlov, “On the rank of matrices with random Boolean elements,” Dokl. Akad. Nauk SSSR,169, No. 5, 1013–1016 (1966).

  32. 32.

    M. V. Kozlov, “A limit theorem for a certain characteristic of a random Boolean matrix,” Teor. Veroyatn. i Primen.,16, No. 1, 83–93 (1971).

  33. 33.

    V. F. Kolchin, “The rate of approximation to the limiting distribution in the classical occupancy problem,” Teor. Veroyatn. i Primen.,11, No. 1, 144–156 (1966).

  34. 34.

    V. F. Kolchin, “A case of uniform local limits theorems with a variable lattice in the classical occupancy problem,” Teor. Veroyatn. i Primen.,12, No. 1, 62–72 (1967).

  35. 35.

    V. F. Kolchin, “A class of limit theorems for conditional distributions,” Liet. Mat. Rinkinys, Lit. Mat. Sb.,8, No. 1, 53–63 (1968).

  36. 36.

    V. F. Kolchin, “On the limiting behavior of the extreme terms of the variational series in the polynomial scheme,” Teor. Veroyatn. i Primen.,14, No. 3, 476–487 (1969).

  37. 37.

    V. F. Kolchin, “A problem on the distributions of particles in cells and the cycles of random permutations,” Teor. Veroyatn. i Primen.,16, No. 1, 67–82 (1971).

  38. 38.

    V. F. Kolchin, “On the distribution of a certain statistic in the polynomial scheme,” Tr. Mosk. Inst. Élektron. Mashinostr., No. 32 (1972).

  39. 39.

    V. F. Kolchin and V. P. Chistyakov, “On a combinatorial limit theorem,” Teor. Veroyatn. i Primen.,18, No. 4, 767–777 (1973).

  40. 40.

    V. F. Kolchin and V. P. Chistyakov, “New limit distributions in the occupancy problem,” Tr. Mosk. Inst. Élektron. Mashinostr., No. 32 (1972).

  41. 41.

    Yu. I. Medvedev, “Some theorems on the asymptotic distribution of the x2 statistic,” Dokl. Akad. Nauk SSSR,192, No. 5, 987–989 (1970).

  42. 42.

    T. Yu. Popova, “Limit theorems in a model of distributing particles of two types,” Teor. Veroyatn. i Primen.,13, No. 3, 542–548 (1968).

  43. 43.

    O. V. Sarmanov and V. K. Zakharov, “A combinatorial problem of N. V. Smirnov,” Dokl. Akad. Nauk SSSR,176, No. 3, 530–532 (1967).

  44. 44.

    V. N. Sachkov, “Asymptotic normality of the distribution of the number of cyclic idempotent elements of symmetric semigroups,” Tr. Mosk. Inst. Élektron. Mashinostr., No. 14, 180–190 (1971).

  45. 45.

    V. N. Sachkov, “The distribution of the number of fixed points of elements of a symmetric semigroup with the conditio σh+1h and the number of trees of height not exceeding h,” Teor. Veroyatn. i Primen.,16, No. 4, 676–687 (1971).

  46. 46.

    V. N. Sachkov, “Mappings of finite sets with restrictions on the contours and height,” Teor. Veroyatn. i Primen.,17, No. 4, 679–694 (1972).

  47. 47.

    V. N. Sachkov, “Random mappings of restricted height,” Teor. Veroyatn. i Primen.,18, No. 1, 122–132 (1973).

  48. 48.

    B. A. Sevast'yanov, “Limit theorems in a certain scheme of distributing particles in cells,” Teor. Veroyatn. i Primen.,11, No. 4, 696–700 (1966).

  49. 49.

    B. A. Sevast'yanov, “The convergence to the Gaussian and Poisson processes of the distribution of the number of empty cells in the classical occupancy problem,” Teor. Veroyatn. i Primen.,12, No. 1, 144–154 (1967).

  50. 50.

    B. A. Sevast'yanov, “Random mappings and partitions of finite sets,” Teor. Veroyatn. i Primen.,17, No. 1, 129–142 (1972).

  51. 51.

    B. A. Sevast'yanov, “The criterion of “empty cells” and its generalizations,” Tbilisis Universiteti Gamokkhenebiti Matematikis Instituti. Shromebi, Tr. In-t. Prikl. Matem., Tbilissk. Un-ta., No. 2, 229–233 (1969).

  52. 52.

    B. A. Sevast'yanov, “The Poisson limit law in the scheme of sums of independent random quantities,” Teor. Veroyatn. i Primen.,17, No. 4, 733–738 (1972).

  53. 53.

    B. A. Sevast'yanov and V. P. Chistyakov, “Asymptotic normality in the classical occupancy problem,” Teor. Veroyatn. i Primen.,9, No. 2, 223–237 (1964).

  54. 54.

    B. A. Sevast'yanov and V. P. Chistyakov, “Letter to the editor” (regarding the paper “Asymptotic normality in the classical occupancy problem”), Teor. Veroyatn. i Primen.,9, No. 3, 568 (1964).

  55. 55.

    N. V. Smirnov, O. V. Sarmanov, and V. K. Zakharov, “A local limit theorem for the number of transitions in a Markov chain and its applications,” Dokl. Akad. Nauk SSSR,167, No. 6, 1238–1241 (1966).

  56. 56.

    V. E. Stepanov, “Limiting distributions of certain characteristics of random mappings,” Teor. Veroyatn. i Primen.,14, No. 4, 639–653 (1969).

  57. 57.

    V. E. Stepanov, “Random mappings with one attracting center,” Teor, Veroyatn. i Primen.,16, No. 1, 148–157 (1971).

  58. 58.

    L. Takács, Combinatorial Methods in the Theory of Stochastic Processes, Wiley (1967).

  59. 59.

    B. A. Trakhtenbrot and Ya. M. Bardzin', Finite Automata, (Behavior and Synthesis), Nauka, Moscow (1970).

  60. 60.

    S. Kh. Tumanyan, “Asymptotic distribution of theX 2 criterion with simultaneous increase in the number of observations and the number of groups,” Teor. Veroyatn. i Primen.,1, No. 1, 131–145 (1956).

  61. 61.

    S. Kh. Tumanyan, “On the asymptotic distribution of theX 2 criterion,” Dokl. Akad. Nauk SSSR,94, No. 6, 1011–1012 (1954).

  62. 62.

    V. P. Chistyakov, “Justification of the calculation of the strength of the criterion of empty cells,” Teor. Veroyatn. i Primen.,9, No. 4, 718–724 (1964).

  63. 63.

    V. P. Chistyakov, “Discrete limiting distributions in occupancy problems with arbitrary probabilities of landing in the cells,” Mat. Zametki,1, No. 1, 9–16 (1967).

  64. 64.

    G. Ailam, “The asymptotic distribution of the measure of random sets and application to the classical occupancy problem and suggestion for curve fitting,” Ann. Math. Stat.,41, No. 2, 427–439 (1970).

  65. 65.

    R. Alter and B. P. Lientz, “Applications of a generalized combinatorial problem of Smirnov,” Nav. Res. Log. Quart.,16, No. 4, 543–547 (1969).

  66. 66.

    V. Balakrishnan, G. Sankaranarayanan, and C. Suyambulingom, “Ordered cycle lengths in a random permutation,” Pacif. J. Math.,36, No. 3, 603–613 (1971).

  67. 67.

    D. E. Barton and F. N. David, “Sequential occupancy,” Biometrika,46, Nos. 1–2, 218–223 (1959).

  68. 68.

    D. E. Barton and F. N. David, “A collector's problem,” Trab. Estadist.,10, No. 2, 75–88 (1959).

  69. 69.

    D. E. Barton and F. N. David, “Runs in a ring,” Biometrika,45, Nos. 3–4, 572–578 (1958).

  70. 70.

    D. E. Barton and F. N. David, “Sequential occupancy with classification,” Biometrika,55, No. 1, 229–241 (1968).

  71. 71.

    D. E. Barton and F. N. David, Combinatorial Chance, Griffin, London (1962).

  72. 72.

    L. E. Baum and P. Billingsley, “Asymptotic distributions for the coupon collector's problem,” Ann. Math. Stat.,36, No. 6, 1835–1839 (1965).

  73. 73.

    A. Békéssy, Egu elosztási problémára vonatkozo határeloszlástétel új bizonyitása,” Magu. Tud. Akad. Mat. ésFiz. Tud. Oszt. Közl.,12, No. 4, 329–334 (1962).

  74. 74.

    A. Békéssy, “On classical occupancy problems. I,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,8, Nos. 1–2, 59–71 (1963).

  75. 75.

    A. Békéssy, “On classical occupancy problems. II. (Sequential occupancy),” Magu. Tud. Akad. Mat. Kutató Int. Közl.,9, Nos. 1–2 133–141 (1964).

  76. 76.

    A. Békéssy, “A lottójátékkal kapcsolatos néhány cellabetöltési problémáról. I,” Mat. Lapok.,15, No. 4, 317–329 (1964).

  77. 77.

    A. Békéssy, “A lottójátékkal kapcsolatos néhány cellabeltöltési problémáról. II,” Mat. Lapok.,16, Nos. 1–2, 57–66 (1965).

  78. 78.

    M. R. Best, “The distribution of some variables on symmetric groups,” Proc. Kon. Ned. Akad. Wetensch.,A73, No. 5, 385–402 (1970); Indag. Math.,A32, No. 5, 385–402 (1970).

  79. 79.

    C. N. Bhaskarananda, “A problem in arrangement,” Math. Stud.,36, Nos. 1–4, 237–239 (1969).

  80. 80.

    P. Billingsley, Convergence of Probability Measures, Wiley, New York, XII (1968).

  81. 81.

    C. R. Blyth and G. L. Curme, “Estimation of a parameter in the classical occupancy problem,” Biometrika,47, Nos. 1–2, 180–185 (1960).

  82. 82.

    R. K. Brayton, “On the asymptotic behavior of the number of trials necessary to complete a set with random selection,” J. Math. Anal. Appl.,7, No. 1, 31–61 (1963).

  83. 83.

    L. Castoldi, “Attorno a un problema probabilistico di occupazione,” Atti Accad. Ligure,11, 119–126, 1954 (1955).

  84. 84.

    F. Chartier, “Le probléme du collectionneur,” Rev. Statist. Appl.,7, No. 1, 63–82 (1959).

  85. 85.

    S. Chowla, I. N. Herstein, and K. Moore, “On recursions with symmetric groups,” Can. J. Math.,3, 328–334 (1951).

  86. 86.

    M. Csorgo and I. Guttman, “On the consistency of the two-sample empty cell test,” Can. Math. Bull.,7, No. 1, 57–63 (1964).

  87. 87.

    M. Csorgo and I. Guttman, “On the empty cell test,” Technometrics,4, No. 2, 235–247 (1962).

  88. 88.

    M. F. Dacey, “A hypergeometric family of discrete probability distributions: properties and applications to location models,” Geogr. Anal.,1, No. 3, 283–317 (1969).

  89. 89.

    D. A. Darling, “Some limit theorems associated with multinomial trials,” 5th Berkeley Sympos. Math. Statist. and Probabil., 1965–1966, Vol. 2, Part 1, Berkeley-Los Angeles (1967), pp. 345–350.

  90. 90.

    B. Decomps and A. Kastler, “Répartition de N particules entre g cellules. Loi des fluctuations,” C. R. Akad. Sci.,256, No. 5, 1087–1089 (1963).

  91. 91.

    J. Dénes, “Some combinatorial properties of transformations and their connections with the theory of graphs,” J. Combin. Theory,9, No. 2, 108–116 (1970).

  92. 92.

    P. J. Denning and S. C. Schwartz, “Properties of the working set model,” Princeton Univ. Dep. Elec. Eng. Comput. Sci. Lab. Tech. Rept. No. 93 (1970).

  93. 93.

    D. Dixon, “The probability of generating the symmetric group,” Math. Z.,110, No. 3, 199–205 (1969).

  94. 94.

    M. Driml and M. Ullrich, “Maximum likelihood estimate of the number of types,” Acta Tech. ESAV,12, No. 3, 300–303 (1967).

  95. 95.

    M. Dwass, “The large-sample power of rank order tests in the two-sample problem,” Ann. Math. Stat.,27, No. 2, 352–374 (1956).

  96. 96.

    M. Dwass, “More birthday surprises,” J. Combin. Theory,7, No. 3, 258–261 (1969).

  97. 97.

    M. Dwass and S. Karlin, “Conditioned limit theorems,” Ann. Math. Stat.,34, No. 4, 1147–1167 (1963).

  98. 98.

    P. J. Eicker, M. M. Siddiqui, and P. W. Mielke, Jr., “A matrix occupancy problem,” Ann. Math. Stat.,43, No. 3, 988–996 (1972).

  99. 99.

    L. Q. Eifer, K. B. Reid, Jr., and D. P. Roselle, “Sequences with adjacent elements unequal,” Aequat. Math.,6, Nos. 2–3, 256–262 (1971).

  100. 100.

    P. Erdös and A. Rényi, “On a classical problem of probability theory,” Magu. tud. Akad. Mat. Kutató Int. Közl.,13, Nos. 1–2, 215–220 (1961).

  101. 101.

    P. Erdös and A. Rényi, “On random matrices,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,8, No. 3, 455–461 (1963).

  102. 102.

    P. Erdös and P. Turan, “On some problems of a statistical group theory. I,” Z. Wahrscheinlich-keitstheor. und Verw. Geb.,4, No. 2, 175–186 (1965).

  103. 103.

    P. Erdös and P. Turan, “On some problems of a statistical group theory. II,” Acta. Math. Acad. Sci. Hung.,8, Nos. 1–2, 151–163 (1967).

  104. 104.

    P. Erdös and P. Turan, “On some problems of a statistical group theory, III,” Acta Math. Acad. Sci. Hung.,18, Nos. 3–4, 309–320 (1967).

  105. 105.

    D. A. S. Fraser, “A vector form of the Wald-Wolfowitz-Hoeffding theorem,” Ann. Math. Stat.,27, No. 2, 540–543 (1956).

  106. 106.

    S. W. Golornb, “Random permutations,” Bull. Amer. Math. Sco.,70, No. 6, 747 (1964).

  107. 107.

    J. Hájek, “Some extensions of the Wald-Wolfowitz-Noether theorem,” Ann. Math. Stat.,32, No. 2, 506–523 (1961).

  108. 108.

    J. Hájek, “Limiting distributions in simple random sampling from a finite population,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,5, No. 3, 361–374 (1960).

  109. 109.

    B. Harris, “A note on the number of idempotent elements in symmetric semigroups,” Amer. Math. Month.,74, No. 10, 1234–1235 (1967).

  110. 110.

    B. Harris, “Probability distributions related to random mappings,” Ann. Math. Stat.,31, No. 4, 1045–1062 (1960).

  111. 111.

    B. Harris and C. J. Park, “The distribution of linear combinations of the sample occupancy numbers,” Proc. Kon. Ned. Akad. Wetensch.,A74, No. 2, 121–134 (1971); Indag. Math.,33, No. 2, 121–134 (1971).

  112. 112.

    B. Harris and C. J. Park, “The limiting distribution of the sample occupancy numbers from the multinomial distribution with equal cell probabilities,” Ann. Inst. Statist. Math.,23, No. 1, 125–133 (1971).

  113. 113.

    B. Harris and L. Schoenfeld, “The number of idempotent elements in symmetric semigroups,” J. Combin. Theory,3, No. 2, 122–135 (1967).

  114. 114.

    W. Hetz and H. Klinger, “Untersuchungen zur Frage der Verteilung von Objekten auf Plätze,” Metrika,1, No. 1, 3–20 (1958).

  115. 115.

    W. Hoeffding, “A combinatorial limit theorem,” Ann. Math. Stat.,22, No. 4, 558–566 (1951).

  116. 116.

    L. Holst, “A note on finding the size of a finite population,” Biometrika,58, No. 1, 228–229 (1971).

  117. 117.

    L. Holst, “Asymptotic normality in a generalized occupancy problem,” Z. Wahrscheinlichkeitstheor. Verw. Geb.,21, No. 2, 109–120 (1972).

  118. 118.

    L. Holst, “Limit theorems for some occupancy and sequential occupancy problems,” Ann. Math. Stat.,42, No. 5, 1671–1680 (1971).

  119. 119.

    L. Holst, “Asymptotic results connected with generalizations of occupancy problems,” Acta Univ. Upsal. Abstrs. Uppsala Diss. Fac. Sci., No. 198 (1972).

  120. 120.

    J. Hubert and T. V. Narayana, “A note on the birthday problem,” Bull. Inst. Politehn. IASI,15, Nos. 1–2, 1/113–1/118 (1969).

  121. 121.

    S. Karlin, “Central limit theorems for certain infinite urn schemes,” J. Math. Mech.,17, No. 4, 373–401 (1967).

  122. 122.

    L. Katz, “Probability of indecomposability of a random mapping function,” Ann. Math. Stat.,26, No. 3, 512–517 (1953).

  123. 123.

    Satoshi Kitabatake, “A remark on a nonparametric test,” Math. Jap.,5, No. 1, 45–49 (1958).

  124. 124.

    M. S. Klamkin and D. J. Newman, “Extensions of the birthday surprise,” J. Combin. Theory,3, No. 3, 279–282 (1967).

  125. 125.

    D. A. Klarner, “The number of Hamiltonian paths and cycles on k-colored graphs,” Proc. Kon. Ned. Akad. Wetensch.,A72, No. 4, 384–387 (1969); Indag. Math.,31, No. 4, 384–387 (1969).

  126. 126.

    M. D. Kruskal, “The expected number of components under a random mapping function,” Amer. Math. Month.,61, No. 6, 392–397 (1954).

  127. 127.

    T. M. Liggett, “An invariance principle of conditioned sums of independent random variables,” J. Math. Mech.,18, No. 6, 559–570 (1968).

  128. 128.

    T. M. Liggett, “Weak convergence of conditioned sums of independent random vectors,” Trans. Amer. Math. Soc.,152, No. 1, 195–213 (1970).

  129. 129.

    T. M. Liggett, “Convergence of sums of random variables conditioned on a future change of sign,” Ann. Math. Stat.,41, No. 6, 1978–1982 (1970).

  130. 130.

    E. H. McKinney, “Generalized birthday problem,” Amer. Math. Month.,73, No. 4, 385–387 (1966).

  131. 131.

    L. Moser and M. Wyman, “On the solutions of xd=1 in symmetric groups,” Can. J. Math.,7, No. 2, 159–168 (1955).

  132. 132.

    F. Mosteller, “Understanding the birthday problem,” Math. Teacher,55, No. 5, 322–325 (1962).

  133. 133.

    Motoo Minoru, “On the Hoeffding's combinatorial central limit theorem,” Ann. Inst. Stat. Math.,8, No. 3, 145–154 (1957).

  134. 134.

    D. J. Newman and L. Shepp, “The double dixie cup problem,” Amer. Math. Month.,67, No. 1, 58–61 (1960).

  135. 135.

    Okamoto Masashi, “On a nonparametric test,” Osaka J. Math.,4, 77–85 (1952).

  136. 136.

    Z. Pauše, “On the distribution of the number of absent outcomes, Glas. Mat.,2, No. 2, 273–276 (1967).

  137. 137.

    H. Rabin and R. Sitgreaves, “Probability distributions related to random transformations of a finite set,” Tech. Rep. No. 19A, Stanford Univ., Stanford (19).

  138. 138.

    A. Rényi, “Three new proofs and a generalization of a theorem of Irving Weiss,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,7, Nos. 1–2, 203–214 (1962).

  139. 139.

    J. Riordan, “Enumeration of linear graphs for mappings of finite sets,” Ann. Math. Stat.,33, No. 1, 178–185 (1962).

  140. 140.

    B. Rosén, “Limit theorems for sampling from finite populations,” Ark. Mat.,5, No. 5, 383–424 (1964).

  141. 141.

    B. Rosén, “On the central limit theorem for sums of dependent random variables,” Z. Wahrschein-lichkeitstheor. Verw. Grb.,7, No. 1, 48–82 (1967).

  142. 142.

    B. Rosén, “Asymptotic normality in a coupon collector's problem,” Z. Wahrscheinlichkeitstheor. und. Verw. Geb.,13, Nos. 3–4, 256–279 (1969).

  143. 143.

    B. Rosén, “On the coupon collector's waiting time,” Ann. Math. Stat.,41, No. 6, 1952–1969 (1970).

  144. 144.

    L. A. Shepp and S. P. Lloyd, “Ordered cycle lengths in a random permutation,” Trans. Amer. Math. Soc.,121, No. 2, 340–357 (1966).

  145. 145.

    G. P. Steck, “Limit theorems for conditional distributions,” Univ. Calif. Publ. Statist.,2, No. 12, 237–284 (1957).

  146. 146.

    W. L. Stevens, “Distributions of groups in sequence alternative,” Ann. Eugenics,9, 10–17 (1939).

  147. 147.

    V. R. R. Uppuluri and J. A. Carpenter, “A generalization of the classical occupancy problem,” J. Math. Anal. Appl.,34, No. 2, 316–324 (1971).

  148. 148.

    A. Wald and J. Wolfowitz, “On the test whether two samples are from the same population,” Ann. Math. Stat.,11, No. 1, 147–162 (1940).

  149. 149.

    A. Wald and J. Wolfowitz, “Statistical tests based on permutations of the observations,” Ann. Math. Stat.,15, No. 4, 358–372 (1944).

  150. 150.

    I. Weiss, “Limiting distributions in some occupancy problems,” Ann. Math. Stat.,29, No. 3, 878–884 (1958).

  151. 151.

    P. Whittle, “Some distribution and moment formulas for the Markov chain,” J. Boy. Statist. Soc.,B17, No. 2, 235–242 (1955).

  152. 152.

    S. S. Wilks, “A combinatorial test for the problem of two samples from continuous distributions,” Proc. 4th Berkeley Sympos. Math. Statist. and Probability, 1960, Vol. 1, Univ. Calif. Press, Berkeley-Los Angeles (1961), pp. 707–717.

  153. 153.

    D. H. Young, “A note on a sequential occupancy problem,” Biometrika,55, No. 3, 591–593 (1968).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki (Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika), Vol. 11, pp. 5–45, 1974).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolchin, V.F., Chistyakov, V.P. Combinatorial problems of probability theory. J Math Sci 4, 217–243 (1975). https://doi.org/10.1007/BF01097183

Download citation

Keywords

  • Probability Theory
  • Combinatorial Problem