Advertisement

Journal of Soviet Mathematics

, Volume 4, Issue 3, pp 217–243 | Cite as

Combinatorial problems of probability theory

  • V. F. Kolchin
  • V. P. Chistyakov
Article

Keywords

Probability Theory Combinatorial Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. V. Balakin, “On random matrices,” Teor. Veroyatn. i Primen.,12, No. 2, 346–353 (1967).Google Scholar
  2. 2.
    G. V. Balakin, “The distribution of the rank of random matrices over finite fields,” Teor. Veroyatn. Primen.,13, No. 4, 631–641 (1968).Google Scholar
  3. 3.
    P. F. Belyaev, “On the probability of nonoccurrence of a given number of outcomes,” Teor. Veroyatn. i Primen.,9, No. 3, 541–547 (1964).Google Scholar
  4. 4.
    P. F. Belyaev, “On the probability of nonoccurrence of a given number of s-chains in multiple Markov chains,” Teor. Veroyatn. i Primen.,10, No. 3, 547–551 (1965).Google Scholar
  5. 5.
    P. F. Belyaev, “On the joint distribution of frequencies of long s-chains in the multinomial scheme with equiprobable outcomes,” Teor. Veroyatn. i Primen.,14, No. 3, 540–546 (1969).Google Scholar
  6. 6.
    P. F. Belyaev, “On the distribution of the statistics of the strongest criterion for two simple hypotheses in multiple Markov chains,” Teor. Veroyatn. i Primen.,12, No. 4, 741–746 (1967).Google Scholar
  7. 7.
    Yu. V. Bolotnikov, “Convergence to Gaussian and Poisson process of the quantitiesμ r (n) in the classical occupancy problem,” Teor. Veroyatn. i Primen.,13, No. 1, 39–50 (1968).Google Scholar
  8. 8.
    Yu. V. Bolotnikov, “Convergence to the Gaussian process of the number of empty cells in the classical problem of distributing particles among cells,” Mat. Zametki,4, No. 1, 97–103 (1968).Google Scholar
  9. 9.
    Yu. V. Bolotnikov, “Limiting processes in the nonequiprobable scheme of distributing particles among cells,” Teor. Veroyatn. i Primen.,13, No. 3, 534–542 (1968).Google Scholar
  10. 10.
    A. M. Vershik and A. A. Shmidt, “Symmetric groups of high degree,” Dokl. Akad. Nauk SSSR,206, No. 2, 269–272 (1972).Google Scholar
  11. 11.
    I. I. Viktorova, “On the asymptotic behavior of the maximum in the equiprobable polynomial scheme,” Mat. Zametki,5, No. 3, 305–316 (1969).Google Scholar
  12. 12.
    I. I. Viktorova and B. A. Sevast'yanov, “On the limiting behavior of the maximum in the polynomial scheme,” Mat. Zametki,1, No. 3, 331–338 (1967).Google Scholar
  13. 13.
    I. I. Viktorova and V. P. Chistyakov, “Some generalizations of the criterion of empty cells,” Teor. Veroyatn. i. Primen.,11, No. 2, 306–313 (1966).Google Scholar
  14. 14.
    I. I. Viktorova and V. P. Chistyakov, “Asymptotic normality in the occupancy problem with arbitrary probabilities of landing in a cell,” Teor. Veroyatn. i Primen.,10, No. 1, 162–167 (1965).Google Scholar
  15. 15.
    J. Hajék and Z. Sidak, Theory of Rank Tests, Academic Press (1967).Google Scholar
  16. 16.
    A. I. Galushkin, B. P. Tyukhov, and V. G. Chigrinov, “On the convergence of a method of random search in finding local and global extrema of a multiextremal function,” Tr. Mosk. Inst. Élektron. Mahsinostr., No. 23, 205–209 (1971).Google Scholar
  17. 17.
    I. I. Gikhman, “Some limit theorems for conditional distributions,” Dokl. Akad. Nauk SSSR,91, No. 5, 1003–1006 (1953).Google Scholar
  18. 18.
    I. I. Gikhman, “On some limit theorems for conditional distributions and related problems of mathematical statistics,” Ukr. Mat. Zh.,5, No. 4, 413–433 (1953).Google Scholar
  19. 19.
    V. L. Goncharov, “On the distribution of cycles in permutations,” Dokl. Akad. Nauk. SSSR,35, No. 9, 299–301 (1942).Google Scholar
  20. 20.
    V. L. Goncharov, “On combinatorics,” Izv. Akad. Nauk SSR Ser. Matem.,8, No. 1, 3–48 (1944).Google Scholar
  21. 21.
    A. A. Grusho, “Random mappings of restricted multiplicity,” Teor. Veroyatn. i Primen.,17, No. 3, 440–449 (1972).Google Scholar
  22. 22.
    S. A. Ivankov, “On the number of repetitions in Markov chains,” Teor. Veroyatn. i Primen.,10, No. 3, 557–560 (1965).Google Scholar
  23. 23.
    G. I. Ivchenko, “On limiting distributions of order statistics of the polynomial scheme,” Teor, Veroyatn. i Primen.,16, No. 1, 94–107 (1971).Google Scholar
  24. 24.
    G. I. Ivchenko, “Limit theorems in the occupancy problem,” Teor. Veroyatn. i Primen.,16, No. 2, 292–305 (1971).Google Scholar
  25. 25.
    G. I. Ivchenko and Yu. I. Medvedev, “Some multidimensional theorems in the classical occupancy problem,” Teor. Veroyatn. i Primen.,10, No. 1, 156–162 (1965).Google Scholar
  26. 26.
    G. I. Ivchenko and Yu. I. Medvedev, “The asymptotic behavior of the number of sets of particles in the classical occupancy problem,” Teor. Veroyatn. i Primen.,11, No. 4, 701–708 (1966).Google Scholar
  27. 27.
    G. I. Ivchenko, Yu. I. Medvedev, and B. A. Sevast'yanov, “The distribution of a random number of particles in cells,” Mat. Zametki,1, No. 5, 549–554 (1967).Google Scholar
  28. 28.
    I N. Kovalenko, “On a limit theorem for determinants in the class of Boolean functions,” Dokl. Akad. Nauk SSSR, No. 3, 517–519 (1965).Google Scholar
  29. 29.
    I. N. Kovalenko, “On the distribution of the linear rank of a random matrix,” Teor. Veroyatn. i Primen.,17, No. 2, 354–359 (1972).Google Scholar
  30. 30.
    I. N. Kovalenko, “On the limiting distribution of the number of solutions of a random system of linear equations in the class of Boolean functions,” Teor. Veroyatn. i Primen.,12, No. 1, 51–61 (1967).Google Scholar
  31. 31.
    M. V. Kozlov, “On the rank of matrices with random Boolean elements,” Dokl. Akad. Nauk SSSR,169, No. 5, 1013–1016 (1966).Google Scholar
  32. 32.
    M. V. Kozlov, “A limit theorem for a certain characteristic of a random Boolean matrix,” Teor. Veroyatn. i Primen.,16, No. 1, 83–93 (1971).Google Scholar
  33. 33.
    V. F. Kolchin, “The rate of approximation to the limiting distribution in the classical occupancy problem,” Teor. Veroyatn. i Primen.,11, No. 1, 144–156 (1966).Google Scholar
  34. 34.
    V. F. Kolchin, “A case of uniform local limits theorems with a variable lattice in the classical occupancy problem,” Teor. Veroyatn. i Primen.,12, No. 1, 62–72 (1967).Google Scholar
  35. 35.
    V. F. Kolchin, “A class of limit theorems for conditional distributions,” Liet. Mat. Rinkinys, Lit. Mat. Sb.,8, No. 1, 53–63 (1968).Google Scholar
  36. 36.
    V. F. Kolchin, “On the limiting behavior of the extreme terms of the variational series in the polynomial scheme,” Teor. Veroyatn. i Primen.,14, No. 3, 476–487 (1969).Google Scholar
  37. 37.
    V. F. Kolchin, “A problem on the distributions of particles in cells and the cycles of random permutations,” Teor. Veroyatn. i Primen.,16, No. 1, 67–82 (1971).Google Scholar
  38. 38.
    V. F. Kolchin, “On the distribution of a certain statistic in the polynomial scheme,” Tr. Mosk. Inst. Élektron. Mashinostr., No. 32 (1972).Google Scholar
  39. 39.
    V. F. Kolchin and V. P. Chistyakov, “On a combinatorial limit theorem,” Teor. Veroyatn. i Primen.,18, No. 4, 767–777 (1973).Google Scholar
  40. 40.
    V. F. Kolchin and V. P. Chistyakov, “New limit distributions in the occupancy problem,” Tr. Mosk. Inst. Élektron. Mashinostr., No. 32 (1972).Google Scholar
  41. 41.
    Yu. I. Medvedev, “Some theorems on the asymptotic distribution of the x2 statistic,” Dokl. Akad. Nauk SSSR,192, No. 5, 987–989 (1970).Google Scholar
  42. 42.
    T. Yu. Popova, “Limit theorems in a model of distributing particles of two types,” Teor. Veroyatn. i Primen.,13, No. 3, 542–548 (1968).Google Scholar
  43. 43.
    O. V. Sarmanov and V. K. Zakharov, “A combinatorial problem of N. V. Smirnov,” Dokl. Akad. Nauk SSSR,176, No. 3, 530–532 (1967).Google Scholar
  44. 44.
    V. N. Sachkov, “Asymptotic normality of the distribution of the number of cyclic idempotent elements of symmetric semigroups,” Tr. Mosk. Inst. Élektron. Mashinostr., No. 14, 180–190 (1971).Google Scholar
  45. 45.
    V. N. Sachkov, “The distribution of the number of fixed points of elements of a symmetric semigroup with the conditio σh+1h and the number of trees of height not exceeding h,” Teor. Veroyatn. i Primen.,16, No. 4, 676–687 (1971).Google Scholar
  46. 46.
    V. N. Sachkov, “Mappings of finite sets with restrictions on the contours and height,” Teor. Veroyatn. i Primen.,17, No. 4, 679–694 (1972).Google Scholar
  47. 47.
    V. N. Sachkov, “Random mappings of restricted height,” Teor. Veroyatn. i Primen.,18, No. 1, 122–132 (1973).Google Scholar
  48. 48.
    B. A. Sevast'yanov, “Limit theorems in a certain scheme of distributing particles in cells,” Teor. Veroyatn. i Primen.,11, No. 4, 696–700 (1966).Google Scholar
  49. 49.
    B. A. Sevast'yanov, “The convergence to the Gaussian and Poisson processes of the distribution of the number of empty cells in the classical occupancy problem,” Teor. Veroyatn. i Primen.,12, No. 1, 144–154 (1967).Google Scholar
  50. 50.
    B. A. Sevast'yanov, “Random mappings and partitions of finite sets,” Teor. Veroyatn. i Primen.,17, No. 1, 129–142 (1972).Google Scholar
  51. 51.
    B. A. Sevast'yanov, “The criterion of “empty cells” and its generalizations,” Tbilisis Universiteti Gamokkhenebiti Matematikis Instituti. Shromebi, Tr. In-t. Prikl. Matem., Tbilissk. Un-ta., No. 2, 229–233 (1969).Google Scholar
  52. 52.
    B. A. Sevast'yanov, “The Poisson limit law in the scheme of sums of independent random quantities,” Teor. Veroyatn. i Primen.,17, No. 4, 733–738 (1972).Google Scholar
  53. 53.
    B. A. Sevast'yanov and V. P. Chistyakov, “Asymptotic normality in the classical occupancy problem,” Teor. Veroyatn. i Primen.,9, No. 2, 223–237 (1964).Google Scholar
  54. 54.
    B. A. Sevast'yanov and V. P. Chistyakov, “Letter to the editor” (regarding the paper “Asymptotic normality in the classical occupancy problem”), Teor. Veroyatn. i Primen.,9, No. 3, 568 (1964).Google Scholar
  55. 55.
    N. V. Smirnov, O. V. Sarmanov, and V. K. Zakharov, “A local limit theorem for the number of transitions in a Markov chain and its applications,” Dokl. Akad. Nauk SSSR,167, No. 6, 1238–1241 (1966).Google Scholar
  56. 56.
    V. E. Stepanov, “Limiting distributions of certain characteristics of random mappings,” Teor. Veroyatn. i Primen.,14, No. 4, 639–653 (1969).Google Scholar
  57. 57.
    V. E. Stepanov, “Random mappings with one attracting center,” Teor, Veroyatn. i Primen.,16, No. 1, 148–157 (1971).Google Scholar
  58. 58.
    L. Takács, Combinatorial Methods in the Theory of Stochastic Processes, Wiley (1967).Google Scholar
  59. 59.
    B. A. Trakhtenbrot and Ya. M. Bardzin', Finite Automata, (Behavior and Synthesis), Nauka, Moscow (1970).Google Scholar
  60. 60.
    S. Kh. Tumanyan, “Asymptotic distribution of theX 2 criterion with simultaneous increase in the number of observations and the number of groups,” Teor. Veroyatn. i Primen.,1, No. 1, 131–145 (1956).Google Scholar
  61. 61.
    S. Kh. Tumanyan, “On the asymptotic distribution of theX 2 criterion,” Dokl. Akad. Nauk SSSR,94, No. 6, 1011–1012 (1954).Google Scholar
  62. 62.
    V. P. Chistyakov, “Justification of the calculation of the strength of the criterion of empty cells,” Teor. Veroyatn. i Primen.,9, No. 4, 718–724 (1964).Google Scholar
  63. 63.
    V. P. Chistyakov, “Discrete limiting distributions in occupancy problems with arbitrary probabilities of landing in the cells,” Mat. Zametki,1, No. 1, 9–16 (1967).Google Scholar
  64. 64.
    G. Ailam, “The asymptotic distribution of the measure of random sets and application to the classical occupancy problem and suggestion for curve fitting,” Ann. Math. Stat.,41, No. 2, 427–439 (1970).Google Scholar
  65. 65.
    R. Alter and B. P. Lientz, “Applications of a generalized combinatorial problem of Smirnov,” Nav. Res. Log. Quart.,16, No. 4, 543–547 (1969).Google Scholar
  66. 66.
    V. Balakrishnan, G. Sankaranarayanan, and C. Suyambulingom, “Ordered cycle lengths in a random permutation,” Pacif. J. Math.,36, No. 3, 603–613 (1971).Google Scholar
  67. 67.
    D. E. Barton and F. N. David, “Sequential occupancy,” Biometrika,46, Nos. 1–2, 218–223 (1959).Google Scholar
  68. 68.
    D. E. Barton and F. N. David, “A collector's problem,” Trab. Estadist.,10, No. 2, 75–88 (1959).Google Scholar
  69. 69.
    D. E. Barton and F. N. David, “Runs in a ring,” Biometrika,45, Nos. 3–4, 572–578 (1958).Google Scholar
  70. 70.
    D. E. Barton and F. N. David, “Sequential occupancy with classification,” Biometrika,55, No. 1, 229–241 (1968).Google Scholar
  71. 71.
    D. E. Barton and F. N. David, Combinatorial Chance, Griffin, London (1962).Google Scholar
  72. 72.
    L. E. Baum and P. Billingsley, “Asymptotic distributions for the coupon collector's problem,” Ann. Math. Stat.,36, No. 6, 1835–1839 (1965).Google Scholar
  73. 73.
    A. Békéssy, Egu elosztási problémára vonatkozo határeloszlástétel új bizonyitása,” Magu. Tud. Akad. Mat. ésFiz. Tud. Oszt. Közl.,12, No. 4, 329–334 (1962).Google Scholar
  74. 74.
    A. Békéssy, “On classical occupancy problems. I,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,8, Nos. 1–2, 59–71 (1963).Google Scholar
  75. 75.
    A. Békéssy, “On classical occupancy problems. II. (Sequential occupancy),” Magu. Tud. Akad. Mat. Kutató Int. Közl.,9, Nos. 1–2 133–141 (1964).Google Scholar
  76. 76.
    A. Békéssy, “A lottójátékkal kapcsolatos néhány cellabetöltési problémáról. I,” Mat. Lapok.,15, No. 4, 317–329 (1964).Google Scholar
  77. 77.
    A. Békéssy, “A lottójátékkal kapcsolatos néhány cellabeltöltési problémáról. II,” Mat. Lapok.,16, Nos. 1–2, 57–66 (1965).Google Scholar
  78. 78.
    M. R. Best, “The distribution of some variables on symmetric groups,” Proc. Kon. Ned. Akad. Wetensch.,A73, No. 5, 385–402 (1970); Indag. Math.,A32, No. 5, 385–402 (1970).Google Scholar
  79. 79.
    C. N. Bhaskarananda, “A problem in arrangement,” Math. Stud.,36, Nos. 1–4, 237–239 (1969).Google Scholar
  80. 80.
    P. Billingsley, Convergence of Probability Measures, Wiley, New York, XII (1968).Google Scholar
  81. 81.
    C. R. Blyth and G. L. Curme, “Estimation of a parameter in the classical occupancy problem,” Biometrika,47, Nos. 1–2, 180–185 (1960).Google Scholar
  82. 82.
    R. K. Brayton, “On the asymptotic behavior of the number of trials necessary to complete a set with random selection,” J. Math. Anal. Appl.,7, No. 1, 31–61 (1963).Google Scholar
  83. 83.
    L. Castoldi, “Attorno a un problema probabilistico di occupazione,” Atti Accad. Ligure,11, 119–126, 1954 (1955).Google Scholar
  84. 84.
    F. Chartier, “Le probléme du collectionneur,” Rev. Statist. Appl.,7, No. 1, 63–82 (1959).Google Scholar
  85. 85.
    S. Chowla, I. N. Herstein, and K. Moore, “On recursions with symmetric groups,” Can. J. Math.,3, 328–334 (1951).Google Scholar
  86. 86.
    M. Csorgo and I. Guttman, “On the consistency of the two-sample empty cell test,” Can. Math. Bull.,7, No. 1, 57–63 (1964).Google Scholar
  87. 87.
    M. Csorgo and I. Guttman, “On the empty cell test,” Technometrics,4, No. 2, 235–247 (1962).Google Scholar
  88. 88.
    M. F. Dacey, “A hypergeometric family of discrete probability distributions: properties and applications to location models,” Geogr. Anal.,1, No. 3, 283–317 (1969).Google Scholar
  89. 89.
    D. A. Darling, “Some limit theorems associated with multinomial trials,” 5th Berkeley Sympos. Math. Statist. and Probabil., 1965–1966, Vol. 2, Part 1, Berkeley-Los Angeles (1967), pp. 345–350.Google Scholar
  90. 90.
    B. Decomps and A. Kastler, “Répartition de N particules entre g cellules. Loi des fluctuations,” C. R. Akad. Sci.,256, No. 5, 1087–1089 (1963).Google Scholar
  91. 91.
    J. Dénes, “Some combinatorial properties of transformations and their connections with the theory of graphs,” J. Combin. Theory,9, No. 2, 108–116 (1970).Google Scholar
  92. 92.
    P. J. Denning and S. C. Schwartz, “Properties of the working set model,” Princeton Univ. Dep. Elec. Eng. Comput. Sci. Lab. Tech. Rept. No. 93 (1970).Google Scholar
  93. 93.
    D. Dixon, “The probability of generating the symmetric group,” Math. Z.,110, No. 3, 199–205 (1969).Google Scholar
  94. 94.
    M. Driml and M. Ullrich, “Maximum likelihood estimate of the number of types,” Acta Tech. ESAV,12, No. 3, 300–303 (1967).Google Scholar
  95. 95.
    M. Dwass, “The large-sample power of rank order tests in the two-sample problem,” Ann. Math. Stat.,27, No. 2, 352–374 (1956).Google Scholar
  96. 96.
    M. Dwass, “More birthday surprises,” J. Combin. Theory,7, No. 3, 258–261 (1969).Google Scholar
  97. 97.
    M. Dwass and S. Karlin, “Conditioned limit theorems,” Ann. Math. Stat.,34, No. 4, 1147–1167 (1963).Google Scholar
  98. 98.
    P. J. Eicker, M. M. Siddiqui, and P. W. Mielke, Jr., “A matrix occupancy problem,” Ann. Math. Stat.,43, No. 3, 988–996 (1972).Google Scholar
  99. 99.
    L. Q. Eifer, K. B. Reid, Jr., and D. P. Roselle, “Sequences with adjacent elements unequal,” Aequat. Math.,6, Nos. 2–3, 256–262 (1971).Google Scholar
  100. 100.
    P. Erdös and A. Rényi, “On a classical problem of probability theory,” Magu. tud. Akad. Mat. Kutató Int. Közl.,13, Nos. 1–2, 215–220 (1961).Google Scholar
  101. 101.
    P. Erdös and A. Rényi, “On random matrices,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,8, No. 3, 455–461 (1963).Google Scholar
  102. 102.
    P. Erdös and P. Turan, “On some problems of a statistical group theory. I,” Z. Wahrscheinlich-keitstheor. und Verw. Geb.,4, No. 2, 175–186 (1965).Google Scholar
  103. 103.
    P. Erdös and P. Turan, “On some problems of a statistical group theory. II,” Acta. Math. Acad. Sci. Hung.,8, Nos. 1–2, 151–163 (1967).Google Scholar
  104. 104.
    P. Erdös and P. Turan, “On some problems of a statistical group theory, III,” Acta Math. Acad. Sci. Hung.,18, Nos. 3–4, 309–320 (1967).Google Scholar
  105. 105.
    D. A. S. Fraser, “A vector form of the Wald-Wolfowitz-Hoeffding theorem,” Ann. Math. Stat.,27, No. 2, 540–543 (1956).Google Scholar
  106. 106.
    S. W. Golornb, “Random permutations,” Bull. Amer. Math. Sco.,70, No. 6, 747 (1964).Google Scholar
  107. 107.
    J. Hájek, “Some extensions of the Wald-Wolfowitz-Noether theorem,” Ann. Math. Stat.,32, No. 2, 506–523 (1961).Google Scholar
  108. 108.
    J. Hájek, “Limiting distributions in simple random sampling from a finite population,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,5, No. 3, 361–374 (1960).Google Scholar
  109. 109.
    B. Harris, “A note on the number of idempotent elements in symmetric semigroups,” Amer. Math. Month.,74, No. 10, 1234–1235 (1967).Google Scholar
  110. 110.
    B. Harris, “Probability distributions related to random mappings,” Ann. Math. Stat.,31, No. 4, 1045–1062 (1960).Google Scholar
  111. 111.
    B. Harris and C. J. Park, “The distribution of linear combinations of the sample occupancy numbers,” Proc. Kon. Ned. Akad. Wetensch.,A74, No. 2, 121–134 (1971); Indag. Math.,33, No. 2, 121–134 (1971).Google Scholar
  112. 112.
    B. Harris and C. J. Park, “The limiting distribution of the sample occupancy numbers from the multinomial distribution with equal cell probabilities,” Ann. Inst. Statist. Math.,23, No. 1, 125–133 (1971).Google Scholar
  113. 113.
    B. Harris and L. Schoenfeld, “The number of idempotent elements in symmetric semigroups,” J. Combin. Theory,3, No. 2, 122–135 (1967).Google Scholar
  114. 114.
    W. Hetz and H. Klinger, “Untersuchungen zur Frage der Verteilung von Objekten auf Plätze,” Metrika,1, No. 1, 3–20 (1958).Google Scholar
  115. 115.
    W. Hoeffding, “A combinatorial limit theorem,” Ann. Math. Stat.,22, No. 4, 558–566 (1951).Google Scholar
  116. 116.
    L. Holst, “A note on finding the size of a finite population,” Biometrika,58, No. 1, 228–229 (1971).Google Scholar
  117. 117.
    L. Holst, “Asymptotic normality in a generalized occupancy problem,” Z. Wahrscheinlichkeitstheor. Verw. Geb.,21, No. 2, 109–120 (1972).Google Scholar
  118. 118.
    L. Holst, “Limit theorems for some occupancy and sequential occupancy problems,” Ann. Math. Stat.,42, No. 5, 1671–1680 (1971).Google Scholar
  119. 119.
    L. Holst, “Asymptotic results connected with generalizations of occupancy problems,” Acta Univ. Upsal. Abstrs. Uppsala Diss. Fac. Sci., No. 198 (1972).Google Scholar
  120. 120.
    J. Hubert and T. V. Narayana, “A note on the birthday problem,” Bull. Inst. Politehn. IASI,15, Nos. 1–2, 1/113–1/118 (1969).Google Scholar
  121. 121.
    S. Karlin, “Central limit theorems for certain infinite urn schemes,” J. Math. Mech.,17, No. 4, 373–401 (1967).Google Scholar
  122. 122.
    L. Katz, “Probability of indecomposability of a random mapping function,” Ann. Math. Stat.,26, No. 3, 512–517 (1953).Google Scholar
  123. 123.
    Satoshi Kitabatake, “A remark on a nonparametric test,” Math. Jap.,5, No. 1, 45–49 (1958).Google Scholar
  124. 124.
    M. S. Klamkin and D. J. Newman, “Extensions of the birthday surprise,” J. Combin. Theory,3, No. 3, 279–282 (1967).Google Scholar
  125. 125.
    D. A. Klarner, “The number of Hamiltonian paths and cycles on k-colored graphs,” Proc. Kon. Ned. Akad. Wetensch.,A72, No. 4, 384–387 (1969); Indag. Math.,31, No. 4, 384–387 (1969).Google Scholar
  126. 126.
    M. D. Kruskal, “The expected number of components under a random mapping function,” Amer. Math. Month.,61, No. 6, 392–397 (1954).Google Scholar
  127. 127.
    T. M. Liggett, “An invariance principle of conditioned sums of independent random variables,” J. Math. Mech.,18, No. 6, 559–570 (1968).Google Scholar
  128. 128.
    T. M. Liggett, “Weak convergence of conditioned sums of independent random vectors,” Trans. Amer. Math. Soc.,152, No. 1, 195–213 (1970).Google Scholar
  129. 129.
    T. M. Liggett, “Convergence of sums of random variables conditioned on a future change of sign,” Ann. Math. Stat.,41, No. 6, 1978–1982 (1970).Google Scholar
  130. 130.
    E. H. McKinney, “Generalized birthday problem,” Amer. Math. Month.,73, No. 4, 385–387 (1966).Google Scholar
  131. 131.
    L. Moser and M. Wyman, “On the solutions of xd=1 in symmetric groups,” Can. J. Math.,7, No. 2, 159–168 (1955).Google Scholar
  132. 132.
    F. Mosteller, “Understanding the birthday problem,” Math. Teacher,55, No. 5, 322–325 (1962).Google Scholar
  133. 133.
    Motoo Minoru, “On the Hoeffding's combinatorial central limit theorem,” Ann. Inst. Stat. Math.,8, No. 3, 145–154 (1957).Google Scholar
  134. 134.
    D. J. Newman and L. Shepp, “The double dixie cup problem,” Amer. Math. Month.,67, No. 1, 58–61 (1960).Google Scholar
  135. 135.
    Okamoto Masashi, “On a nonparametric test,” Osaka J. Math.,4, 77–85 (1952).Google Scholar
  136. 136.
    Z. Pauše, “On the distribution of the number of absent outcomes, Glas. Mat.,2, No. 2, 273–276 (1967).Google Scholar
  137. 137.
    H. Rabin and R. Sitgreaves, “Probability distributions related to random transformations of a finite set,” Tech. Rep. No. 19A, Stanford Univ., Stanford (19).Google Scholar
  138. 138.
    A. Rényi, “Three new proofs and a generalization of a theorem of Irving Weiss,” Magu. Tud. Akad. Mat. Kutató Int. Közl.,7, Nos. 1–2, 203–214 (1962).Google Scholar
  139. 139.
    J. Riordan, “Enumeration of linear graphs for mappings of finite sets,” Ann. Math. Stat.,33, No. 1, 178–185 (1962).Google Scholar
  140. 140.
    B. Rosén, “Limit theorems for sampling from finite populations,” Ark. Mat.,5, No. 5, 383–424 (1964).Google Scholar
  141. 141.
    B. Rosén, “On the central limit theorem for sums of dependent random variables,” Z. Wahrschein-lichkeitstheor. Verw. Grb.,7, No. 1, 48–82 (1967).Google Scholar
  142. 142.
    B. Rosén, “Asymptotic normality in a coupon collector's problem,” Z. Wahrscheinlichkeitstheor. und. Verw. Geb.,13, Nos. 3–4, 256–279 (1969).Google Scholar
  143. 143.
    B. Rosén, “On the coupon collector's waiting time,” Ann. Math. Stat.,41, No. 6, 1952–1969 (1970).Google Scholar
  144. 144.
    L. A. Shepp and S. P. Lloyd, “Ordered cycle lengths in a random permutation,” Trans. Amer. Math. Soc.,121, No. 2, 340–357 (1966).Google Scholar
  145. 145.
    G. P. Steck, “Limit theorems for conditional distributions,” Univ. Calif. Publ. Statist.,2, No. 12, 237–284 (1957).Google Scholar
  146. 146.
    W. L. Stevens, “Distributions of groups in sequence alternative,” Ann. Eugenics,9, 10–17 (1939).Google Scholar
  147. 147.
    V. R. R. Uppuluri and J. A. Carpenter, “A generalization of the classical occupancy problem,” J. Math. Anal. Appl.,34, No. 2, 316–324 (1971).Google Scholar
  148. 148.
    A. Wald and J. Wolfowitz, “On the test whether two samples are from the same population,” Ann. Math. Stat.,11, No. 1, 147–162 (1940).Google Scholar
  149. 149.
    A. Wald and J. Wolfowitz, “Statistical tests based on permutations of the observations,” Ann. Math. Stat.,15, No. 4, 358–372 (1944).Google Scholar
  150. 150.
    I. Weiss, “Limiting distributions in some occupancy problems,” Ann. Math. Stat.,29, No. 3, 878–884 (1958).Google Scholar
  151. 151.
    P. Whittle, “Some distribution and moment formulas for the Markov chain,” J. Boy. Statist. Soc.,B17, No. 2, 235–242 (1955).Google Scholar
  152. 152.
    S. S. Wilks, “A combinatorial test for the problem of two samples from continuous distributions,” Proc. 4th Berkeley Sympos. Math. Statist. and Probability, 1960, Vol. 1, Univ. Calif. Press, Berkeley-Los Angeles (1961), pp. 707–717.Google Scholar
  153. 153.
    D. H. Young, “A note on a sequential occupancy problem,” Biometrika,55, No. 3, 591–593 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. F. Kolchin
  • V. P. Chistyakov

There are no affiliations available

Personalised recommendations