Journal of Global Optimization

, Volume 7, Issue 2, pp 143–182 | Cite as

Finding all solutions of nonlinearly constrained systems of equations

  • Costas D. Maranas
  • Christodoulos A. Floudas


A new approach is proposed for finding allε-feasible solutions for certain classes of nonlinearly constrained systems of equations. By introducing slack variables, the initial problem is transformed into a global optimization problem (P) whose multiple global minimum solutions with a zero objective value (if any) correspond to all solutions of the initial constrained system of equalities. Allε-globally optimal points of (P) are then localized within a set of arbitrarily small disjoint rectangles. This is based on a branch and bound type global optimization algorithm which attains finiteε-convergence to each of the multiple global minima of (P) through the successive refinement of a convex relaxation of the feasible region and the subsequent solution of a series of nonlinear convex optimization problems. Based on the form of the participating functions, a number of techniques for constructing this convex relaxation are proposed. By taking advantage of the properties of products of univariate functions, customized convex lower bounding functions are introduced for a large number of expressions that are or can be transformed into products of univariate functions. Alternative convex relaxation procedures involve either the difference of two convex functions employed in αBB [23] or the exponential variable transformation based underestimators employed for generalized geometric programming problems [24]. The proposed approach is illustrated with several test problems. For some of these problems additional solutions are identified that existing methods failed to locate.

Key words

Global optimization nonlinear systems of equations all solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Horst, P. M. Pardalos and N. V. Thoai,Introduction to Global Optimization. Kluwer Academic Publishers, 1995.Google Scholar
  2. 2.
    R. Horst and P. M. Pardalos.Handbook of Global Optimization. Kluwer Academic Publishers, 1995.Google Scholar
  3. 3.
    F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming.Math. Opers. Res.,8:523, 1983.Google Scholar
  4. 4.
    I. P. Androulakis, C. D., Maranas, and C. A. Floudas. αBB: Global Optimization for Constrained Nonconvex Problems.J. Global Opt.,7(4), 1995 (forthcoming).Google Scholar
  5. 5.
    A. Brooke, D. Kendrick and A. Meeraus.GAMS: A User's Guide. Scientific Press, Palo Alto, CA., 1988.Google Scholar
  6. 6.
    L. G. Bullard and L. T. Biegler. Iterative Linear Programming Strategies for Constrained Simulation.Computers chem. Engng.,15(4):239, 1991.Google Scholar
  7. 7.
    H. S. Chen and M. A. Stadtherr. On solving large sparse nonlinear equation systems.Comp. chem. Engnr.,8:1, 1984.Google Scholar
  8. 8.
    D. Davidenko.Dokl. Akad. Nauk USSR,88:601, 1953.Google Scholar
  9. 9.
    E. Doedel.AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Applied Mathematics, Caltech, Pasadena, CA, 1986.Google Scholar
  10. 10.
    I. S. Duff, J. Nocedal and J. K. Reid. The use of linear programming for the solution of sparse sets of nonlinear equations.SIAMJ. Sci. Stat. Comp.,8:99, 1987.Google Scholar
  11. 11.
    G. B. Ferraris and E. Tronconi. BUNSLI —a FORTRAN program for solution of systems of nonlinear algebraic equations.Computers chem. Engng,10:12, 1986.Google Scholar
  12. 12.
    C. B. Garcia and W. I. Zangwill.Pathways to Solutions, Fixed Points and Equilibria. Pentice Hall, 1981.Google Scholar
  13. 13.
    E. R. Hansen.Global Optimization Using Interval Analysis. Marcel Dekkar, New York, NY, 1992.Google Scholar
  14. 14.
    P. Hansen, B. Jaumard and S. H. Lu. Global optimization of univariate Lipschitz functions: I. Survey and propoerties.Math. Prog.,55:251, 1992.Google Scholar
  15. 15.
    R. Horst and H. Tuy.Global Optimization. Springer-Verlag, 1st. edition, 1990.Google Scholar
  16. 16.
    R. B. Kearfott, M. Dawande, K. Du and Ch. Hu. INTLIB, a Portable FORTRAN 77 Interval Standard Function Library,in press, 1994.Google Scholar
  17. 17.
    R. B. Kearfott and M. Novoa. INTBIS, a Portable Interval Newton/Bisection Package.ACM Trans. Math. Soft.,16:152, 1990.Google Scholar
  18. 18.
    R. W. Klopfenstein.J. Assoc. Comput. Mach.,8:366, 1961.Google Scholar
  19. 19.
    E. Lahaye.C.R. Acad. Sci. Paris,198:1840, 1934.Google Scholar
  20. 20.
    J. Leray and J. Schauder.Ann. Sci. Ecole Norm Sup.,51:45, 1934.Google Scholar
  21. 21.
    D. G. Luenberger.Linear and Nonlinear Programming. Addisson-Wesley, Reading, MA, 1984.Google Scholar
  22. 22.
    C. D. Maranas and C. A. Floudas. Global Optimization for Molecular Conformation Problems.Ann. Oper. Res.,42:85, 1993.Google Scholar
  23. 23.
    C. D. Maranas and C. A. Floudas. Global Minimum Potential Energy Conformations of Small Molecules.Glob. Opt.,4:135, 1994a.Google Scholar
  24. 24.
    C. D. Maranas and C. A. Floudas. Global Optimization in Generalized Geometric Porgramming.submitted to Comp. chem. Engnr., 1994c.Google Scholar
  25. 25.
    K. Meintjes and A. P. Morgan. Chemical Equilibrium Systems as Numerical Test Problmes.ACM Transactions on Mathematical Software,16(2): 143, 1990.Google Scholar
  26. 26.
    J. J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. InNumerical Analysis-Proceedings of the Biennial Conference, Lecture Notes in Mathematics, number 630, Berlin, Germany, 1987. Springer-Verlag.Google Scholar
  27. 27.
    A. P. Morgan.Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. Pentice-Hall, Inc., 1987.Google Scholar
  28. 28.
    B. A. Murtagh and M. A. Saunders.MINOS5.0 Users Guide. Systems Optimization Laboratory, Dept. of Operations Research, Stanford University, CA., 1983. Appendix A: MINOS5.0, Technical Report SOL 83-20.Google Scholar
  29. 29.
    A. Neumaier.Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, UK, 1990.Google Scholar
  30. 30.
    J. R. Paloschi and J. D. Perkins. An implementation of quasi-Newton methods for solving sets of nonlinear equations.Comp. chem. Engnr.,12:767, 1988.Google Scholar
  31. 31.
    M. J. D. Powell.Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach, London, UK, 1970.Google Scholar
  32. 32.
    H. Ratschek and J. Rokne. Experiments using interval analysis for solving a circuit design problem.J. Glob. Opt.,3:501, 1993.Google Scholar
  33. 33.
    G. V. Reklaitis and K. M. Ragsdell.Engineering Optimization. John Wiley & Sons, New York, NY, 1983.Google Scholar
  34. 34.
    L. T. Watson, S. C. Billips and A. P. Morgan.ACM Trans. Math. Soft., 13:281, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Costas D. Maranas
    • 1
  • Christodoulos A. Floudas
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations