Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral analysis of periodic systems with degenerate weight (expansions in Bloch solutions)

  • 17 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. I. Khrabustovskii, “Spectral analysis of periodic systems with a degenerate weight on the axis and the semiaxis,” Teor. Funktsii Funktsional. Anal. i Prilozhen. (Kharkov), No. 44, 122–133 (1985).

  2. 2.

    V. I. Khrabustovskii, “Expansions in the eigenfunctions of periodic systems with weight,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 5, 26–29 (1984).

  3. 3.

    V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, Vols. 1 and 2, Wiley, New York (1975).

  4. 4.

    F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York (1964).

  5. 5.

    V. I. Khrabustovskii, “The spectral matrix of a periodic symmetric system with a degenerate weight on the axis,” Teor. Funktsii Funktsional. Anal. i Prilozhen. (Kharkov), No. 35, 111–119 (1981).

  6. 6.

    Yu. L. Daletskii (Ju. L. Daleckii) and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Am. Math. Soc., Providence (1974).

Download references

Additional information

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 46, pp. 122–132, 1986.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khrabustovskii, V.I. Spectral analysis of periodic systems with degenerate weight (expansions in Bloch solutions). J Math Sci 48, 598–607 (1990). https://doi.org/10.1007/BF01095631

Download citation

Keywords

  • Spectral Analysis
  • Periodic System
  • Degenerate Weight
  • Bloch Solution