Applied Physics B

, Volume 63, Issue 2, pp 167–178 | Cite as

Multi-line fluorescence imaging of the rotational temperature field in a shock-tunnel free jet

Article

Abstract

A quasi-steady, highly underexpanded free jet of argon seeded with nitric oxide (NO) was generated at the exit of a converging, axisymmetric nozzle supplied by a shock-tunnel reservoir at 4200 K and 3.0 atm. During each run of the facility, an isolated transition in theA2ΣX2 (0, 0) band of NO at ∼ 226 nm was pumped with a pulse of frequency-doubled dye laser light formed into a thin sheet and directed perpendicularly through the axis of the jet. The red-shifted components of the resulting fluorescence at 90° with respect to the laser were imaged onto an intensified, charge-coupled device array. A ratio of images obtained by exciting lines originating from two different rotational states could be used to infer the mean rotational temperature field. However, because of the extreme variations in temperature and density present in the free jet, no single pair of lines simultaneously provided adequate signal levels and temperature sensitivity over the flow's entire temperature range (i.e., ∼ 100–3100 K). Instead, a combination of images obtained with four different transitions was used. Excellent agreement was observed between multi-line temperature evaluations from single-shot and frame-averaged images and a numerical simulation of the flow performed by the method of characteristics.

PACS

07.20Dt 47.40.Ki 33.50.Dj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Anderson: Tech. Dig. AIAA 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conf., Snowmass, CO (1984) Paper 84-1578Google Scholar
  2. 2.
    M.G. Dunn, J.A. Lordi, C.E. Wittliff, M.S. Holden: Tech. Dig. AIAA 27th Aerospace Sciences Meeting, Reno, NV (1989) Paper 89-0184Google Scholar
  3. 3.
    R.K. Hanson, J.M. Seitzman, P.M. Paul: Appl. Phys. B50, 441 (1990)Google Scholar
  4. 4.
    R.L. McKenzie: AIAA J.31, 465 (1993)Google Scholar
  5. 5.
    K. Kohse-Höinghaus: Prog. Energy Combust. Sci.20, 203 (1994)Google Scholar
  6. 6.
    R.J. Cattolica: Appl. Opt.20, 1156 (1981)Google Scholar
  7. 7.
    R.L. McKenzie, K.P. Gross: Appl. Opt.20, 2153 (1981)Google Scholar
  8. 8.
    D.G. Fletcher, J.C. McDaniel: Opt. Lett.12, 16 (1987)Google Scholar
  9. 9.
    M.S. Smith, L.L. Price, W.D. Williams: AIAA J.31, 478 (1993)Google Scholar
  10. 10.
    J.H. Grinstead, G. Laufer, J.C. McDaniel: Appl. Phys. B57, 393 (1993)Google Scholar
  11. 11.
    P.H. Paul, R.K. Hanson: Tech. Dig. AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conf., Orlando, FL (1990) Paper 90-1844Google Scholar
  12. 12.
    M. Allen, S. Davis, K. Donohue: Tech. Dig. AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conf., Orlando, FL (1990) Paper 90-2383Google Scholar
  13. 13.
    J.M. Seitzman, R.K. Hanson: Appl. Phys. B57, 384 (1993)Google Scholar
  14. 14.
    J.M. Seitzman, R.K. Hanson, P.A. DeBarber, C.F. Hess: Appl. Opt.33, 4000 (1994)Google Scholar
  15. 15.
    B.K. McMillin, J.M. Seitzman, R.K. Hanson: AIAA J.32, 1945 (1994)Google Scholar
  16. 16.
    B.K. McMillin, J.L. Palmer, R.K. Hanson: Appl. Opt.32, 7532 (1993)Google Scholar
  17. 17.
    T. Ni-Imi, T. Fujimoto, N. Shimizu: Opt. Lett.15, 918 (1990)Google Scholar
  18. 18.
    M.P. Lee: Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2. Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA (1991)Google Scholar
  19. 19.
    B.K. McMillin, J.L. Palmer, R.K. Hanson: Tech. Dig. AIAA 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conf., Honolulu, HA (1991) Paper 91-1670Google Scholar
  20. 20.
    A. Arnold, B. Lange, T. Bouché, F. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: Ber. Bunsenges. Phys. Chem.96, 1388 (1992)Google Scholar
  21. 21.
    J.L. Palmer, R.K. Hanson: Appl. Opt.35, 485 (1996)Google Scholar
  22. 22.
    J.M. Seitzmann, G. Kychakoff, R.K. Hanson: Opt. Lett.10, 439 (1985)Google Scholar
  23. 23.
    M.P. Lee, P.H. Paul, R.K. Hanson: Opt. Lett.12, 75 (1987)Google Scholar
  24. 24.
    R.J. Hartfield, S.D. Hollo, J.C. McDaniel: Opt. Lett.16, 106 (1991)Google Scholar
  25. 25.
    M.P. Lee, B.K. McMillin, R.K. Hanson: Appl. Opt.32, 5379 (1993)Google Scholar
  26. 26.
    R.B. Miles, J.J. Connors, P.J. Howard, E.C. Markovitz, G.J. Roth: Opt. Lett.13, 195 (1988)Google Scholar
  27. 27.
    G. Laufer, R.L. McKenzie, D.G. Fletcher: Appl. Opt.29, 4873 (1990)Google Scholar
  28. 28.
    D.G. Fletcher, R.L. McKenzie: Opt. Lett.17, 1614 (1992)Google Scholar
  29. 29.
    R. Engleman, P.E. Rouse: J. Mol. Spectrosc.37, 240 (1971)Google Scholar
  30. 30.
    J.R. Reisel, C.D. Carter, N.M. Laurendeau: Appl. Opt.47, 43 (1992)Google Scholar
  31. 31.
    H. Zacharias, J.B. Halpern, K.H. Welge: Chem. Phys. Lett.43, 41 (1976)Google Scholar
  32. 32.
    I.S. McDermid and J.B. Laudenslager: J. Quant. Spectrosc. Radiat. Transfer27, 483 (1982)Google Scholar
  33. 33.
    T.J. McGee, G.E. Miller, J. Burris, T.J. McIlrath: J. Quant. Spectrosc. Radiat. Transfer29, 333 (1983)Google Scholar
  34. 34.
    T.J. McGee, J. Burris, J. Barnes: J. Quant. Spectrosc. Radiat. Transfer34, 81 (1985)Google Scholar
  35. 35.
    H. Scheingraber, C.R. Vidal: J. Opt. Soc. Am,2, 343 (1985)Google Scholar
  36. 36.
    G.F. Nutt, S.C. Haydon, A.I. McIntosh: Chem. Phys. Lett.62, 402 (1979)Google Scholar
  37. 37.
    P.H. Paul, J.A. Gray, J.L. Durant, J.W. Thoman: AIAA J.32, 1670 (1994)Google Scholar
  38. 38.
    J.L. Palmer, R.K. Hanson: Shock Waves4, 313 (1995)Google Scholar
  39. 39.
    J.L. Palmer and R.K. Hanson: Tech. Dig. AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conf. and Exhibit, Monterey, CA (1993) Paper 93-2020Google Scholar
  40. 40.
    W.G. Vincenti, C.H. Kruger:Introduction to Physical Gas Dynamics (Krieger, Malabar, FL 1965)Google Scholar
  41. 41.
    P.M. Doherty, D.R. Crosley: Appl. Opt.23, 713 (1984)Google Scholar
  42. 42.
    M.C. Drake, J.W. Ratcliffe: J. Chem. Phys.98, 3850 (1993)Google Scholar
  43. 43.
    H.P. Broida, T. Carrington: J. Chem. Phys.38, 136 (1963)Google Scholar
  44. 44.
    A.V. Smith, A.W. Johnson: Chem. Phys. Lett.93, 608 (1982)Google Scholar
  45. 45.
    T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito: Chem. Phys.84, 151 (1984)Google Scholar
  46. 46.
    A.B. Callear, I.W.M. Smith: Trans. Faraday Soc. 59, 1735 (1963)Google Scholar
  47. 47.
    T. Imajo, K. Shibuya, K. Obi, I. Tanaka: J. Phys. Chem.90, 6006 (1986)Google Scholar
  48. 48.
    L.A. Melton, W. Klemperer: J. Chem. Phys.55, 1468 (1971)Google Scholar
  49. 49.
    W. Qingyu, M. Yang, Y. Li: J. Electrochem. Soc.137, 3099 (1990)Google Scholar
  50. 50.
    A.S. Sudbø, M.M.T. Loy: J. Chem. Phys.76, 3646 (1982)Google Scholar
  51. 51.
    H. Joswig, P. Andresen, R. Schinke: J. Chem. Phys.85, 1904 (1986)Google Scholar
  52. 52.
    X. Yang, A.M. Wodtke: J. Chem. Phys.96, 5123 (1992)Google Scholar
  53. 53.
    W.G. Mallard, J.H. Miller, K.C. Smyth: J. Chem. Phys.76, 3483 (1982)Google Scholar
  54. 54.
    P.K. Falcone, R.K. Hanson, C.H. Kruger: J. Quant. Spectrosc. Radiat. Transfer29, 205 (1983)Google Scholar
  55. 55.
    J.W. Thoman, J.A. Gray, J.L. Durant, P.H. Paul: J. Chem. Phys.97, 8156 (1992)Google Scholar
  56. 56.
    R.J. Cattolica, T.G. Mataga, J.A. Cavolowsky: J. Quant. Spectrosc. Radiat. Transfer42, 499 (1989)Google Scholar
  57. 57.
    A.Y. Chang, M.D. DiRosa, R.K. Hanson: J. Quant. Spectrosc. Radiat. Transfer47, 375 (1992)Google Scholar
  58. 58.
    M.D. Di Rosa, A.Y. Chang, R.K. Hanson: Appl. Opt.32, 4074 (1993)Google Scholar
  59. 59.
    M.D. Di Rosa, R.K. Hanson: J. Mol. Spectrosc.164, 97 (1994)Google Scholar
  60. 60.
    L.G. Dodge, J. Dusek, M.F. Zabielski: J. Quant. Spectrosc. Radiat. Transfer24, 237 (1980)Google Scholar
  61. 61.
    A.G. Gaydon, I.R. Hurle:The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York 1963)Google Scholar
  62. 62.
    B.K. McMillin: Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow-fields. Ph. D. Thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA (1993)Google Scholar
  63. 63.
    K. Radhakrishnan, D.A. Bittker: NASA Rep. TM 105851 (1993)Google Scholar
  64. 64.
    H. Ashkenas, F.S. Sherman: InRarefied Gas Dynamics, ed. by J.H. de Leeuw, Vol. II (Academic, New York 1966)Google Scholar
  65. 65.
    J.L. Palmer, B.K. McMillin, R.K. Hanson: Tech. Dig. AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, NV (1992) Paper 92-0762Google Scholar
  66. 66.
    Schott Glass Technologies:Optical Glass Filters (Duryea, PA 1988)Google Scholar
  67. 67.
    I.J. Wysong, D.H. Campbell: InRarefied Gas Dynamics: Experimental Techniques and Physical Systems, ed. by B.D. Shizgal, D.P. Weaver, Prog. Astronaut. Aeronaut., Vol. 158 (American Institute of Aeronautics and Astronautics, Washington, DC 1992)Google Scholar
  68. 68.
    L.D. Snow, R.N. Compton, J.C. Miller: J. Chem. Phys.88, 1652 (1988)Google Scholar
  69. 69.
    R. Zhang, D.R. Crosley: J. Chem. Phys.102, 7418 (1995)Google Scholar
  70. 70.
    J.A. Gray, P.H. Paul, J.L. Durant: Chem. Phys. Lett.190, 266 (1992)Google Scholar
  71. 71.
    L.A. Melton, W. Klemperer: J. Chem. Phys.59, 1099 (1973)Google Scholar
  72. 72.
    J.L. Palmer, R.K. Hanson: Tech. Dig. AIAA 31st Aerospace Sciences Meeting and Exhibit, Reno, NV (1993) Paper 93-0046Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Lam Research CorporationFremontUSA
  3. 3.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations