Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Vector fields and functions on discriminants of complete intersections and on bifurcation diagrams of projections

Abstract

The paper studies vector fields that preserve the discriminants of isolated singularities of complete intersections and bifurcation diagrams of projections to the straight line. The results are applied to find stable functions on discriminants of simple complete intersections and normal forms of functions of general position on bifurcation diagrams of projections of low codimension.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. G. Aleksandrov, “Cohomology of quasihomogeneous complete intersection,” Izv. Akad. Nauk SSSR,49, No. 3, 467–510 (1985).

  2. 2.

    V. I. Arnol'd, “Critical points on a manifold with an edge, the simple Lie groups Bk, Ck, and F4, and singularities of evolutes,” Usp. Mat. Nauk,33, No. 5, 91–105 (1978).

  3. 3.

    V. I. Arnol'd, V. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Maps, Vol. I [in Russian], Nauka, Moscow (1982).

  4. 4.

    V. V. Goryunov, “The Poincaré polynomial of the space of residue forms on a quasihomogeneous complete intersection,” Usp. Math. Nauk,35, No. 2, 205–206 (1980).

  5. 5.

    V. V. Goryunov, “The geometry of bifurcation diagrams of simple projections on the straight line,” Funkts. Anal. Prilozhen.,15, No. 2, 1–8 (1981).

  6. 6.

    V. V. Goryunov, “Bifurcation diagrams of some simple and quasihomogeneous singularities,” Funkts. Anal. Prilozhen.,17, No. 2, 23–37 (1983).

  7. 7.

    V. V. Goryunov, “Singularities of projections of complete intersections,” Itogi Nauki i Tekhniki, Sovr. Probl. Mat.,22, 167–206 (1983).

  8. 8.

    V. V. Goryunov, “Projections and vector fields tangent to the discriminant of a complete intersection,” Funkts. Anal. Prilozhen.,21, No. 2, 26–37 (1987).

  9. 9.

    V. M. Zakalyukin, “Evolution of wave fronts dependent on one parameter,” Funkts. Anal. Prilozhen.,10, No. 2, 69–70 (1976).

  10. 10.

    V. M. Zakalyukin, “Legendre maps in Hamiltonian systems,” in: Some Problems of Mechanics [in Russian], MAI, Moscow (1977), pp. 11–16.

  11. 11.

    Le Dung Trang, “Computing the Milnor number of an isolated singularity of a complete intersection,” Funkts. Anal. Prilozhen.,8, No. 2, 45–49 (1974).

  12. 12.

    V. I. Arnold, “Wave front evolution and equivariant Morse lemma,” Commun. Pure Appl. Math.,29, No. 6, 557–582 (1976).

  13. 13.

    J. W. Bruce, “Vector fields on discriminants and bifurcation varieties,” Bull. London Math. Soc.,17, No. 3, 257–262 (1985).

  14. 14.

    M. Giusti, “Classification des singularites isolees d'intersections completes simples,” C. R. Acad. Sci.,284, No. 3, A167-A170 (1977).

  15. 15.

    M. Giusti, “Classification des singularites isolees simples d'intersections completes,” Preprint, Ecole Polytechnique (1977).

  16. 16.

    M. Giusti, “Sur les singularites isolees d'intersections completes quasihomogenes,” Ann. Inst. Fourier,27, No. 3, 163–192 (1977).

  17. 17.

    M. Giusti, “Classification des singularites isolees simples d'intersections completes,” in: Singularities, Proc. Summer Inst. Arcata, Calif., 20 July–7 Aug, 1981, Part 1, Providence, R.I. (1983), pp. 457–494.

  18. 18.

    M. Golubitski and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. 1, Springer, New York (1985).

  19. 19.

    G.-M. Greuel, “Dualitat in der lokalen Kohomologie isolierter Singularitaten,” Math. Ann.,250, No. 2, 157–173 (1980).

  20. 20.

    H. A. Hamm, “Lokale topologische Eigenschaften komplexer Raume,” Math. Ann.,191, No. 3, 235–252 (1971).

  21. 21.

    E. Looijenga, Isolated Singular Points on Complete Intersections, London Math. Soc. Lect. Notes Ser.,77 (1984).

  22. 22.

    R. Pellikaan, “Residual Jacobi ideals of hypersurface singularities,” Preprint 357, Utrecht Univ. Dept. of Math. (1984).

  23. 23.

    R. Pellikaan, “Hypersurface singularities and resolution of Jacobi modules,” Proefschrift, Utrecht (1985).

  24. 24.

    K. Saito, “Quasihomogene isolierte Singularitaten von Hyperflachen,” Invent. Math.,14, No. 2, 123–142 (1971).

  25. 25.

    K. Saito, “Theory of logaritihmic differential forms and logarithmic vector fields,” J. Fac. Sci. Univ. Tokyo, Sec. 1A,27, No. 2, 265–291 (1980).

  26. 26.

    D. Siersma, “Isolated line singularities,” Preprint 217, Utrecht Univ. Dept of Math. (1981).

  27. 27.

    D. Siersma, “Isolated line singularities,” in: Singularities, Proc. Summer Inst. Arcata, Calif., 20 July–7 Aug., 1981, Part 2, Providence, R.I. (1983), pp. 485–496.

  28. 28.

    D. Siersma, “Hypersurfaces with singular locus: a plane curve and transversal type A1,” Preprint 406, Utrecht Univ. Dept. of Math. (1986).

  29. 29.

    D. Siersma, “Singularities with critical locus: a 1-dimensional locus and transversal type A1,” Preprint 407, Utrecht Univ. Dept. of Math. (1986).

  30. 30.

    H. Terao, “The bifurcation set and logarithmic vector fields,” Math. Ann.,263, No. 3, 313–321 (1983).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovermennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 33, pp. 31–54, 1988.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goryunov, V.V. Vector fields and functions on discriminants of complete intersections and on bifurcation diagrams of projections. J Math Sci 52, 3231–3245 (1990). https://doi.org/10.1007/BF01095249

Download citation

Keywords

  • Vector Field
  • Normal Form
  • General Position
  • Bifurcation Diagram
  • Complete Intersection