Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral properties and the spectrum distribution function of a transversally elliptic operator

  • 30 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    M. F. Atiyah, “Elliptic operators and compact groups,“ in: Lecture Notes in Math., Vol. 401, Springer-Verlag, Berlin-Heidelberg-New York (1974), pp. 1–93.

  2. 2.

    D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970).

  3. 3.

    A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin-Heidelberg-New York (1976).

  4. 4.

    M. A. Naimark and A. I. Stern, Theory of Group Representations, Springer-Verlag, Berlin-Heidelberg-New York (1982).

  5. 5.

    M. A. Shubin, Pseudodifferential Operators and Spectral Theory [in Russian], Nauka, Moscow (1978).

  6. 6.

    N. Dunford and J. T. Schwartz, Linear Operator. Part I: General Theory, Interscience, New York-London (1958).

  7. 7.

    R. Zulanke and P. Wintgen, Differential Geometry and Fiber Bundles [Russian translation], Mir, Moscow (1975).

  8. 8.

    H. Kumano-go and C. Tsutsumi, “Complex powers of hypoelliptic pseudodifferential operators,” Osaka J. Math.,10, No. 1, 147–174 (1973).

  9. 9.

    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York-London (1962).

  10. 10.

    D. P. Zhelobenko, “On infinitely differentiable vectors in the theory of representations,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 1, 3–10 (1965).

  11. 11.

    M. E. Taylor, “Fourier series on compact Lie groups,” Proc. Am. Math. Soc.,19, 1103–1105 (1968).

  12. 12.

    M. Sugiura, “Fourier series of smooth functions on compact Lie groups,” Osaka J. Math.,8, 33–47 (1971).

  13. 13.

    S. M. Nikolski, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).

  14. 14.

    Functional Analysis. Reference Mathematics Library (S. G. Krein, ed.) [in Russian], Nauka, Moscow (1972).

  15. 15.

    R. T. Seeley, “Complex powers of an elliptic operator,” Proc. Symp. in Pure Math., Am. Math. Soc.,10, 288–307 (1967).

  16. 16.

    V. I. Feigin, “Asymptotic distribution of eigenvalues for hypoelliptic systems in Rn,” Mat. Sb.,99, No. 4, 594–614 (1976).

  17. 17.

    M. A. Shubin, “On the essential self-adjointness of uniformly hypoelliptic operators,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 2, 91–94 (1975).

Download references

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskii, No. 8, pp. 239–258, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shubin, M.A. Spectral properties and the spectrum distribution function of a transversally elliptic operator. J Math Sci 32, 406–422 (1986). https://doi.org/10.1007/BF01095054

Download citation

Keywords

  • Distribution Function
  • Spectral Property
  • Elliptic Operator
  • Spectrum Distribution
  • Spectrum Distribution Function