Advertisement

Journal of Soviet Mathematics

, Volume 32, Issue 4, pp 389–406 | Cite as

Entropy of a gas of hard spheres with respect to the group of space-time translations

  • Ya. G. Sinai
  • N. I. Chernov
Article
  • 46 Downloads

Keywords

Entropy Hard Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. L. Dobrushin, “Gibbsian random fields,” Funkts. Anal. Prilozhen.,2, No. 4, 31–43 (1968).Google Scholar
  2. 2.
    O. E. Lanford, III, Time Evolution of Large Classical Systems. Dynamical Systems, Theory and Applications, Lecture Notes in Phys., Vol. 38, Springer-Verlag, Berlin (1975).Google Scholar
  3. 3.
    R. A. Minlos, “The regularity of limit Gibbsian distributions,” Funkts. Anal. Prilozhen.,1, No. 3, 40–53 (1967).Google Scholar
  4. 4.
    E. Prezutti, M. Pulvirenti, and B. Tirozzi, “Time evolution of infinite of infinite classical systems with a singular long-range pair potential,” in: Mathematics. New Foreign Science, Vol. II [Russian translation], Mir, Moscow (1978), pp. 219–240.Google Scholar
  5. 5.
    R. Alexander, “Time evolution for infinitely many hard spheres,” Commun. Math. Phys.,49, No. 3, 217–232 (1976).Google Scholar
  6. 6.
    J. P. Conze, “Entropie d'un groupe Abelian de transformations,” Z. Wahrsch. Verwand. Gebiete,25, No. 1, 11–30 (1972).Google Scholar
  7. 7.
    Ya. G. Sinai, Entropy per Particle for the Dynamical System of Hard Spheres, Preprint, Harvard Univ. (1978).Google Scholar
  8. 8.
    Ya. B. Pesin, “A formula for the entropy of a geodesic flow,” Mat. Zametki,24, No. 4, 553–570 (1978).Google Scholar
  9. 9.
    Ya. G. Sinai, Development of Krylov's Ideas, Afterword to the Princeton Edition of the book by N. S. Krylov, “Works on the Foundations of Statistical Physics.” Princeton Series in Physcs, Princeton Univ. Press (1980).Google Scholar
  10. 10.
    L. N. Vaserstein, “On systems of particles with finite-range and/or respulsive interactions,” Commun. Math. Phys.,69, No. 1, 31–56 (1979).Google Scholar
  11. 11.
    G. Sandri, R. D. Sullivan, and P. Noren, “Collisions of three hard spheres,” Phys. Rev. Lett.,13, No. 25, 743–745 (1964).Google Scholar
  12. 12.
    G. A. Gal'perin, “On systems of locally interacting and repelling particles moving in space,” Tr. Mosk. Mat. Obshch.,43, 142–196 (1981).Google Scholar
  13. 13.
    Ya. G. Sinai, “The construction of cluster dynamics for dynamical systems of statistical mechanics,” Vestn. Mosk. Univ., Ser. Mat. Mekh.,1974, No. 1, 152–158.Google Scholar
  14. 14.
    O. E. Lanford, III, and D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics,” Commun. Math. Phys.,13, No. 3, 194–215 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Ya. G. Sinai
  • N. I. Chernov

There are no affiliations available

Personalised recommendations