Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An estimate of the radius of a cylinder imbeddable in every lattice packing of n-dimensional unit spheres

  • 28 Accesses

  • 3 Citations

Abstract

This note is devoted to the reduction of the problem in the title to a more fully explored problem in the geometry of numbers. The estimates obtained are given in Table 1.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. Fejes Toth, “Verdeckung einer Kugel dürch Kugeln,” Publ. Math. Debrecen,6, 307–313 (1959).

  2. 2.

    A. Heppes, “On the number of spheres which can hide a given sphere,” Canad. J. Math.,19, 413–418 (1967).

  3. 3.

    L. Danzer, “Drei Beispiele zu Lagerungsproblemen,” Arch. Math. (Basel),6, 1959–1965 (1960).

  4. 4.

    A. Heppes, “Ein Satz über gitterförmige Kugelpackung,” Ann. Sci. Univ. Budapest Eötvös. Sect. Math.,3–4, 89–90 (1960–61).

  5. 5.

    I. Hortobagyi, “Durchlentung gitterförmiger Kugelpackung mit Lichtbündeln,” Studia Sci. Math. Hung.,6, 147–150 (1971).

  6. 6.

    J. Horvath, “Über Duochsichtigkeit gitterförmiger Kugelpackungen,” Studia Sci. Math. Hungar.,5, 421–426 (1970).

  7. 7.

    J. Horvath, “Remarks on the theory of a cloud of spheres,” Ann. Univ. Sci. Budapest, Eötvös Sect. Math.,15, 147–150 (1972).

  8. 8.

    C. Rogers, Packing and Covering, Cambridge Univ.

  9. 9.

    E. P. Baranovskii, “Packings, coverings, partitionings and certain other arrangements in spaces of constant curvature,” in: Results of Science, Algebra. Geometry. Topology. 1967 [in Russian], Moscow (1969), pp. 189–225.

  10. 10.

    B. N. Delone, N. P. Dolbilin, S. S. Ryshkov, and M. I. Shtogrin, “A new construction in the theory of lattice coverings of n-dimensional space by equal spheres,” Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 2, 289–298 (1970).

  11. 11.

    S. S. Ryshkov, “The polyhedron μ(m) and certain extremal problems in the geometry of numbers,” Dokl. Akad. Nauk SSSR,194, No. 3, 514–517 (1970).

  12. 12.

    S. S. Ryshkov, “The density of(r, ℛ)-systems,” Matem. Zametki,16, No. 3, 447–453 (1974).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 17, No. 1, pp. 123–128, January, 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ryshkov, S.S., Horvath, J.G. An estimate of the radius of a cylinder imbeddable in every lattice packing of n-dimensional unit spheres. Mathematical Notes of the Academy of Sciences of the USSR 17, 72–75 (1975). https://doi.org/10.1007/BF01093847

Download citation

Keywords

  • Unit Sphere
  • Lattice Packing