Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Random symmetric polynomials

  • 34 Accesses

  • 1 Citations

Abstract

Let {Q(n)(x1,...,xn)} be a sequence of symmetric polynomials having a fixed degree equal to k. Let {Xn1,...,Xnn}, n⩾ k, be some sequence of series of random variables (r.v.). We form the sequence of r.v. Yn=Q(n)(Xn1, ... Xnn), n⩾ k One obtains limit theorems for the sequence Yn, under very general assumptions.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    B. A. Sevast'yanov, “A class of limit distributions for quadratic forms of normal random variables,” Teor. Veroyatn. Primen.,6, No. 3, 368–372 (1961).

  2. 2.

    G. G. Gregory, “Large sample theory for U-statistics and tests of fit,” Ann. Statist.,5, No. 1, 110–123 (1977).

  3. 3.

    A. G. Kurosh, A Course in Higher Algebra [in Russian], GITTL, Moscow (1949).

  4. 4.

    G. J. Székely, “A limit theorem for elementary symmetric polynomials of independent random variables,” Z. Wahrsch. Verw. Gebiete,59, No. 3, 355–359 (1982).

  5. 5.

    G. Neuhaus, “Functional limit theorems for U-statistics in the degenerate case,” J. Multivariate Anal.,7, No. 3, 424–439 (1977).

  6. 6.

    T. L. Malevich and B. A. Abdalimov, “Estimation of the deviation of the distribution of a U-statistic from the normal distribution,” Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 10–13 (1979).

  7. 7.

    T. F. Mori, “On a Hoeffding-type problem,” Lecture Notes Statist., No. 8, 174–181 (1981).

  8. 8.

    E. B. Dynkin and A. Mandelbaum, “Symmetric statistics, Poisson point processes, and multiple Wiener integrals,” Ann. Statist.,11, No. 3, 739–745 (1983).

Download references

Additional information

Translated from Veroyatnostnye Raspredeleniya i Matematicheskaya Statistika, pp. 170–188, 1986.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zolotarev, V.M. Random symmetric polynomials. J Math Sci 38, 2262–2272 (1987). https://doi.org/10.1007/BF01093827

Download citation

Keywords

  • Limit Theorem
  • General Assumption
  • Symmetric Polynomial
  • Obtain Limit Theorem