Advertisement

Theoretical and Mathematical Physics

, Volume 29, Issue 1, pp 901–905 | Cite as

Quasicalssical expansion in quantum field theory and solitons

  • I. V. Volovich
Article
  • 46 Downloads

Keywords

Soliton Field Theory Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Glimm and A. Jaffe, Ann. Math.,100, 585 (1974).Google Scholar
  2. 2.
    T. H. R. Skyrme, Proc. R. Soc.,A262, 237 (1961).Google Scholar
  3. 3.
    L. D. Faddeev, Pis'ma Zh. Eksp. Teor. Fiz.,20, 756 (1975).Google Scholar
  4. 4.
    L. A. Takhtadzhyan and L. D. Faddeev, Teor. Mat. Fiz.,22, 143 (1975).Google Scholar
  5. 5.
    S. Coleman, Phys. Rev.,D11, 2088 (1975).Google Scholar
  6. 6.
    S. Mandelstam, Phys. Rev.,D11, 3026 (1975).Google Scholar
  7. 7.
    A. K. Pogrebkov and V. N. Sushko, Teor. Mat. Fiz.,24, 425 (1975);26, 419 (1976).Google Scholar
  8. 8.
    B. Schroer, Preprint DESY 75/22 (1975).Google Scholar
  9. 9.
    T. H. R. Skyrme, J. Math. Phys.,12, 1735 (1971).Google Scholar
  10. 10.
    V. E. Korepin and L. D. Faddeev, Teor. Mat. Fiz.,25, 147 (1975).Google Scholar
  11. 11.
    I. Ya. Aref'eva, A. A. Slavnov, and L. D. Faddeev, Teor. Mat. Fiz.,21, 311 (1974).Google Scholar
  12. 12.
    A. N. Polyakov, Zh. Eksp. Teor. Fiz.,68, 1975 (1975).Google Scholar
  13. 13.
    J. Goldstone, and R. Jackiw, Phys. Rev.,D11, 2943 (1975).Google Scholar
  14. 14.
    R. F. Dashen, S. Hasslacher, and A. Neveu, Phys. Rev.,D10, 4114 (1974).Google Scholar
  15. 15.
    Yu. S. Tyupkin, V. A. Fateev, and A. S. Shvarts, Dokl. Akad. Nauk SSSR,221, 70 (1975).Google Scholar
  16. 16.
    N. N. Bogolyubov, Ukr. Mat. Zh.,2, 3 (1950).Google Scholar
  17. 17.
    A. V. Razumov and O. A. Khrustalev, Preprint IFVÉ, Serpukhov (1976).Google Scholar
  18. 18.
    Y. Nambu, Phys. Lett.,26B, 626 (1968).Google Scholar
  19. 19.
    V. P. Maslov, Teor. Mat. Fiz.,2, 21 (1970).Google Scholar
  20. 20.
    S. Coleman and E. Weinberg, Phys. Rev.,D7, 1888 (1973).Google Scholar
  21. 21.
    K. Hepp, Commun. Math. Phys.,35, 25 (1974).Google Scholar
  22. 22.
    I. Ya. Aref'eva and V. E. Korepin, Pis'ma Zh. Eksp. Teor. Fiz.,20, 680 (1974).Google Scholar
  23. 23.
    J. Fröhlich, Phys. Rev. Lett.,34, 833 (1975).Google Scholar
  24. 24.
    S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys.,13, 1 (1969);15, 173 (1969).Google Scholar
  25. 25.
    M. K. Polivanov, V. N. Sushko, and S. S. Khoruzhii, Teor. Mat. Fiz.,16, 2 (1973).Google Scholar
  26. 26.
    R. F. Streater and I. F. Wilde, Nucl. Phys.,B24, 561 (1970).Google Scholar
  27. 27.
    I. S. Shapiro, Pis'ma Zh. Eksp. Teor. Fiz.,19, 345 (1974).Google Scholar
  28. 28.
    K. Cahill, Phys. Lett.,53B, 174 (1974).Google Scholar
  29. 29.
    P. Vinciarelli, Phys. Lett.,59B, 380 (1975).Google Scholar
  30. 30.
    J. Glimm and A. Jaffe, “Boson quantum field models,” in: Mathematics of Contemporary Physics, (ed. R. Streater), Academic Press, New York (1972).Google Scholar
  31. 31.
    K. Jorgens, Math. Annalen,138, 179 (1959).Google Scholar
  32. 32.
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M. I. T. Press, Cambr., Mass. (1966).Google Scholar
  33. 33.
    H. F. Trotter, Pac. Math.,8, 887 (1958).Google Scholar
  34. 34.
    R. Hoegh-Krohn and B. Simon, J. Funct. Anal.,9, 121 (1972).Google Scholar
  35. 34.
    J. Fröhlich, Commun. Math. Phys.,47, 233 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • I. V. Volovich

There are no affiliations available

Personalised recommendations