Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Centralizer-factorizable groups

  • 23 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    P. Hall, “A characteristic property of soluble groups,” J. London Math. Soc.,12, 198–200 (1937).

  2. 2.

    S. N. Chernikov, “Finite super-solvable groups with Abelian Sylow subgroups,” in: Groups Determined by Properties of the Subgroup Systems [in Russian], Mathematics Institute, Academy of Sciences of the Ukrainian SSR, Kiev (1979), pp. 3–15.

  3. 3.

    P. Hall, “Complemented groups,” J. London Math. Soc.,12, 201–204 (1937).

  4. 4.

    N. V. Chernikova, “Groups with complemented subgroups,” Mat. Sb.,39, 273–292 (1956).

  5. 5.

    Yu. M. Gorchakov, “Primitively factorizable groups,” Uch. Zap. Perm. Univ.,17, 16–31 (1960).

  6. 6.

    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1972).

  7. 7.

    S. N. Chernikov, Groups with Given Properties of the Subgroup System [in Russian], Nauka, Moscow (1980).

  8. 8.

    A. M. Broshi, “Finite groups whose Sylow subgroups are Abelian,” J. Algebra,17, 74–82 (1971).

  9. 9.

    A. G. Kurosh, Group Theory, Chelsea Publ.

  10. 10.

    B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin (1967).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 35, No. 1, pp. 58–63, January–February, 1983.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muldagaliev, V.S. Centralizer-factorizable groups. Ukr Math J 35, 50–55 (1983). https://doi.org/10.1007/BF01093163

Download citation