Advertisement

Ukrainian Mathematical Journal

, Volume 34, Issue 5, pp 532–536 | Cite as

The hypercentral coradical of a KI-group

  • I. Ya. Subbotin
Brief Communications
  • 18 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Lermann, “Endliche Gruppen, deren Kommutatorgruppen Ordnung eine Primzahl p ≠ 2 ist,” Schriftenr. Math. Inst. Inst. Angew. Math. Univ. Berlin,4, 183–203 (1939).Google Scholar
  2. 2.
    V. V. Sergeichuk, “Finite p-groups with commutator subgroup of order,*” in: XII All-Union Algebra Colloquium [in Russian], Vol. 1, Sverdlovsk (1973).Google Scholar
  3. 3.
    R. I. Miech, “On p-groups with a cyclic commutator subgroup,” J. Aust. Math. Soc., 20 (A), 178–198 (1975).Google Scholar
  4. 4.
    N. F. Sesekin and A. I. Starostin, “On one class of periodic groups,” Usp. Mat. Nauk,9, No. 4, 225–228 (1954).Google Scholar
  5. 5.
    W. Gashiitz, “Gruppen in deren das Normalteilers ien transitiv ist,” J. Reine Angew. Math.,198, 87–92 (1957).Google Scholar
  6. 6.
    D. S. Robinson, “Groups in which normality is a transitive relation,” Proc. Cambridge Philos. Soc.,60, 21–38 (1964).Google Scholar
  7. 7.
    I. N. Abramovskii, “Locally generalized Hamiltonian groups,” Sib. Mat. Zh.,7, No. 3, 481–485 (1968).Google Scholar
  8. 8.
    I. Ya. Subbotin, “Finite groups in which each subgroup of the commutator subgroup is invariant,” Mat. Zametki,12, No. 6, 739–745 (1972).Google Scholar
  9. 9.
    I. Ya. Subbotin, “Finite p-groups in which each subgroup of the commutator subgroup is invariant,” Dopov. Akad. Nauk Ukr. SSR,12, 1072–1074 (1974).Google Scholar
  10. 10.
    I. Ya. Subbotin, “Infinite finitely generated groups in which each subgroup of the commutator subgroup is invariant,” Ukr. Mat. Zh.,17, No. 3, 406–411 (1975).Google Scholar
  11. 11.
    I. Ya. Subbotin, “On infinite groups in which each subgroup of the commutator subgroup is invariant,” in: Constructive Description of Groups with Given Properties of Subgroups [in Russian], Kiev (1980), pp. 92–107.Google Scholar
  12. 12.
    A. G. Kurosh, Group Theory, Chelsea Publ. (1979).Google Scholar
  13. 13.
    S. N. Chernikov, “To the theory of complete groups,” Mat. Sb.,22, 319–348 (1948).Google Scholar
  14. 14.
    D. I. Zaitsev, “Hypercyclic extensions of Abelian groups,” in: Groups Determined by Properties of the System of Subgroups [in Russian], Kiev (1979), pp. 16–37.Google Scholar
  15. 15.
    V. P. Shunkov, “On groups decomposable into a uniform product of their π-subgroups,” Dokl. Akad. Nauk SSSR,154, 542–544 (1964).Google Scholar
  16. 16.
    S. N. Chernikov, “On complementability of Sylow T-subgroups in some classes of infinite groups,” Mat. Sb.,37, 557–566 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • I. Ya. Subbotin
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUSSR

Personalised recommendations