Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The axiom of determinacy and the modern development of descriptive set theory

  • 93 Accesses

  • 1 Citations

Abstract

This article contains a survey of modern investigations in descriptive set theory connected with the axiom of determinacy.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    P. S. Aleksandrov,Introduction to Set Theory and General Topology [in Russian], Nauka, Moscow (1977).

  2. 2.

    V. Ya. Arsenin and A. A. Lyapunov, “The theory ofA-sets,” Usp. Mat. Nauk,5, No. 5(39), 45–108 (1950).

  3. 3.

    J. Barwise, ed.,Handbook of Mathematical Logic. Part II: Set Theory North-Holland Pub. Co., Amsterdam-New York (1977).

  4. 4.

    V. G. Kanovei, “N. N. Luzin's projective hierarchy: the current status of the theory,” in:Handbook of Mathematical Logic. Part II, Set Theory [Russian translation], Nauka, Moscow, (1982), pp. 273–364.

  5. 5.

    V. G. Kanovei,The Axiom of Choice and the Axiom of Determinacy [in Russian], Nauka, Moscow (1984).

  6. 6.

    V. G. Kanovei, “The development and current status of descriptive set theory in the light of the works of N. N. Luzin,” Usp. Mat. Nauk,40, No. 3(243), 117–155 (1985).

  7. 7.

    A. N. Kolmogorov, “On operations on sets,” Mat. Sb.35, No. 3–4, 414–422 (1928).

  8. 8.

    N. N. Luzin,On Some New Results in Descriptive Function Theory [in Russian], Akad. Nauk SSSR, Moscow (1935).

  9. 9.

    A. A. Lyapunov, “R-sets,” Tr. Mat. Instituta im. V. A. Steklova Akad. Nauk SSSR,40, 1–68 (1953).

  10. 10.

    A. A. Lyapunov and P. S. Novikov, “Descriptive set theory,” in:Mathematics in the USSR after 30 Years [in Russian], Gostekhizdat, Moscow, (1948), pp. 243–255.

  11. 11.

    P. S. Novikov, “On the consistency of some propositions of descriptive set theory,” Tr. Mat. Instituta im. V. A. Steklova Acad. Nauk SSSR,38, 279–316 (1951).

  12. 12.

    H. Rogers,Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

  13. 13.

    V. A. Uspenskii “N. N. Luzin's contribution to the descriptive theory of sets and functions: concepts, problems, predictions,” Usp. Mat. Nauk,40, No. 3(243), 85–116 (1985).

  14. 14.

    J. W. Addison, “Separation principles in the hierarchies of classical and effective descriptive set theory,” Fund. Math.,46, No. 2, 123–135 (1958).

  15. 15.

    J. W. Addison and Y. M. Moschovakis, “Some consequences of the axiom of definable determinateness,” Proc. Nat. Acad. Sci. USA,59, No. 3, 708–712 (1968).

  16. 16.

    D. Blackwell, “Infinite games and analytic sets,” Proc. Nat. Acad. Sci. USA,58, No. 6, 1836–1837 (1967).

  17. 17.

    J. Burgess, “Effective enumeration of classes of ∑ 1 1 equivalence relations,” Indiana Univ. Math. J.,28, No. 3, 353–364 (1979).

  18. 18.

    J. Burgess, “Careful choices: a last word on Borel selectors,” Notre Dame J. Form. Log.,22, No. 3, 219–226 (1981).

  19. 19.

    J. Burgess, “What areR-sets?” Patras Logic Symposium. Proc. Log. Symp., Patras, 18–22 Aug. 1980, 307–324, Amsterdam (1982).

  20. 20.

    D. Cenzer and R. Mauldin, “Inductive definability: measure and category,” Adv. Math.,38, No. 1, 55–90 (1980).

  21. 21.

    D. Cenzer and R. Mauldin, “Borel equivalence and isomorphism of coanalytic sets,” Rozpr. Math., No. 228 (1984).

  22. 22.

    M. Davis, “Infinite games of perfect information,” Ann. Math. Stud.,52, 85–101 (1964).

  23. 23.

    H. Friedman, “Higher set theory and mathematical practice,” Ann. Math. Log.,2, No. 3, 326–357 (1971).

  24. 24.

    D. Gale and F. Stewart, “Infinite games with perfect information,” Ann. Math. Stud.,2, No. 3, 245–256 (1953).

  25. 25.

    D. Guaspari, “Trees, norms, and scales,” London Math. Soc. Lecture Notes Series, No. 87, 135–161 (1983).

  26. 26.

    L. A. Harrington, “Analytic determinacy and 0#,” J. Symbolic Log.,43, No. 4, 685–693 (1978).

  27. 27.

    L. A. Harrington and A. S. Kechris, “On the determinacy of games on ordinals,” Ann. Math. Log.,20, No. 2, 109–154 (1981).

  28. 28.

    L. Kantorovitch and E. Livenson, “Memoir on the analytical operations and projective sets,” Fund. Math.,18, 214–279 (1932);20, 54–97, (1933).

  29. 29.

    A. S. Kechris, “AD and projective ordinals,” Lecture Notes Math.,689, 91–132 (1978).

  30. 30.

    A. S. Kechris, “On transfinite sequences of projective sets with an application to ∑ 1 1 equivalence relations,” Logic Colloquium77, 155–160, Amsterdam (1978).

  31. 31.

    A. S. Kechris, “Forcing in analysis,” Lect. Notes Math.,669, 277–302 (1978).

  32. 32.

    A. S. Kechris, “Souslin cardinals,ϰ-souslin sets and the scale property in the hyperprojective hierarchy,” Lect. Notes Math.,839, 127–146 (1981).

  33. 33.

    A. S. Kechris, “The axiom of determinacy implies dependent choices in L(R),” J. Symbol. Log.,49, No. 1, 161–175 (1984).

  34. 34.

    A. S. Kechris and D. A. Martin, “Infinite games and effective descriptive set theory,” in:Analytic Sets, London, (1980), 403–470.

  35. 35.

    A. S. Kechris, D. A. Martin, and Y. M. Moschovakis, eds., Cabal Seminar 77–79, Lect. Notes Math.,839, 1–274 (1981).

  36. 36.

    A. S. Kechris, D. A. Martin, and Y. M. Moschovakis, eds., Cabal Seminar 79–81, Lect. Notes Math., 1–288 (1983).

  37. 37.

    A. S. Kechris and Y. M. Moschovakis, eds., Cabal Seminar 76–77, Lect. Notes Math.,689, 1–322 (1978).

  38. 38.

    E. M. Kleinberg, “Infinitary combinatorics and the axiom of determinateness,” Lect. Notes Math.,612, 1–150 (1977).

  39. 39.

    M. Kondô, “Sur l'uniformisation des complémentaires analytiques et les ensembles projectifs de seconde classe,” Jap. J. Math.,15, 197–230 (1938).

  40. 40.

    K. Kuratowski, “Sur les théorèmes de séparation dans la théorie des ensembles,” Fund. Math.,26, 183–191 (1936).

  41. 41.

    M. Lavrent'ev (M. Lavrentieff), “Contribution à la théorie des ensembles homéomorphes,” Fund. Math.,6, 149–160 (1924).

  42. 42.

    M. Lavrent'ev (M. Lavrentieff), “Sur les sous-classes et la classification de M. Baire,” C. R. Acad. Sci. Paris,180, 111–114 (1925).

  43. 43.

    A. Louveau, “A separation theorem for ∑ 1 1 sets,” Trans. Amer. Math. Soc.,260, No. 2, 363–378 (1980).

  44. 44.

    A. Louveau, “Some results in the Wadge hierarchy of Borel sets,” Lect. Notes Math.,1019, 28–55 (1983).

  45. 45.

    N. Luzin (N. Lusin), “Sur la classification de M. Baire,” C. R. Acad. Sci. Paris,164, 91–94 (1917).

  46. 46.

    N. Luzin (N. Lusin), “Sur les ensembles projectifs de M. Henri Lebesgue,” C. R. Acad. Sci. Paris,180, 1572–1574 (1925).

  47. 47.

    N. Luzin (N. Lusin), “Sur le problème de M. Hadamard d'uniformisation des ensembles,” Mathematica, Cluj, 54–66 (1930).

  48. 48.

    N. Luzin (N. Lusin),Leçons sur les ensembles analytiques et leurs applications, Paris (1930).

  49. 49.

    N. Luzin and P. Novikov (N. Lusin and P. Novikoff), “Choix effectif d'un point dans un complémentaire analytique donné par un crible,” Fund. Math.,25, 559–560 (1935).

  50. 50.

    R. Mansfield, “A Souslin opération for Π 2 1 ,” Isr. J. Math.,9, No. 3, 367–369 (1971).

  51. 51.

    D. A. Martin, “The axiom of determinateness and reduction principles in the analytical hierarchy,” Bull. Amer. Math. Soc.,74, No. 4, 687–689 (1968).

  52. 52.

    D. A. Martin, “Measurable cardinals and analytic games,” Fund. Math.,66, No. 3, 287–291 (1970).

  53. 53.

    D. A. Martin, “Borel determinacy,” Ann. Math.,102, No. 2, 363–371 (1975).

  54. 54.

    Y. M. Moschovakis, “Determinacy and prewell orderings of the continuum,” Math. Logic and Foundations of Set Theory, Amsterdam-London, 24–62 (1970).

  55. 55.

    Y. M. Moschovakis, “Uniformization in a playful universe,” Bull. Amer. Math. Soc.,77, No. 5, 731–736 (1971).

  56. 56.

    Y. M. Moschovakis, “The game quantifier,” Proc. Amer. Math. Soc.,31, No. 1, 245–250 (1972).

  57. 57.

    Y. M. Moschovakis, “Analytical definability in a playful universe,” in:Logic, Methodology and Philosophy of Science, vol. IV, Amsterdam, (1973), pp. 77–85.

  58. 58.

    Y. M. Moschovakis,Descriptive Set Theory, Amsterdam (1980).

  59. 59.

    J. Mycielski, “On the axiom of determinateness,” Fund. Math.,53, No. 2, 205–224 (1964);59, No. 2, 203–212 (1966).

  60. 60.

    J. Mycielski and H. Steinhaus, “A mathematical axiom contradicting the axiom of choice,” Bull. Acad. pol. sci. Sér. sci. math., astron. et phys.,10, No. 1, 1–3 (1962).

  61. 61.

    J. Mycielski and S. Swierczkowski, “On the Lebesgue measurability and the axiom of determinateness,” Fund. Math.,54, No. 1, 67–71 (1964).

  62. 62.

    P. Novikov (P. Novikoff), “Sur les fonctions implicites mesurablesB,” Fund. Math.,17, 8–25 (1931).

  63. 63.

    P. Novikov (P. Novikoff), “Sur la séparabilité des ensembles projectifs de seconde classe,” Fund. Math.,25, 459–466 (1935).

  64. 64.

    K. Shilling and R. L. Vaught, “Borel games and the Baire property,” Trans. Amer. Math. Soc.,279, No. 1, 411–428 (1983).

  65. 65.

    J. Shoenfield, “The problem of predicativity,” in:Essays on the Foundations of Mathematics, Jerusalem, (1961), pp. 132–139.

  66. 66.

    W. Sierpinski, “Sur une classe d'ensembles,” Fund. Math.,7, 237–243 (1925).

  67. 67.

    J. Silver, “Some applications of model theory in set theory,” Ann. Math. Log.,3, No. 1, 45–110 (1970).

  68. 68.

    J. Silver, “Counting the number of equivalence classes of Borel and coanalytic equivalence relations,” Ann. Math. Log.,18, No. 1, 1–28 (1980).

  69. 69.

    R. M. Solovay, “A model of set theory in which every set of reals is Lebesgue measurable,” Ann. Math.92, No. 1, 1–56 (1970).

  70. 70.

    R. M. Solovay, “The independence of DC from AD,” Lect. Notes Math.,689, 171–184 (1978).

  71. 71.

    M. Suslin (M. Souslin), “Sur une définition des ensembles mesurablesB sans nombres transfinis,” C. R. Acad. Sci. Paris,164, 89–91 (1917).

  72. 72.

    J. R. Steel, “Analytic sets and Borel isomorphisms,” Fund. Math.,108, No. 2, 83–88 (1980).

  73. 73.

    J. R. Steel, “Determinateness and the separation property,” J. Symbol. Log.,46, No. 1, 41–44 (1981).

  74. 74.

    J. R. Steel, “Scales on ∑ 1 1 sets,” Lect. Notes Math.,1019, 72–76 (1983).

  75. 75.

    J. Stern, “Effective partitions of the real line into Borel sets of bounded rank,” Ann. Math. Log.,18, No. 1, 29–60 (1980).

  76. 76.

    J. Stern, “Analytic equivalence relations and coanalytic games,” Patras Logic Symp., Proc. Log. Symp., Patras, 18–22 Aug., 1980, 239–260, Amsterdam (1982).

  77. 77.

    H. Tanaka, “Recursion theory in analytical hierarchy,” Comment. Math. Univ. St. Pauli,27, No. 2, 113–132 (1978).

  78. 78.

    R. van Wesep, “Wadge degrees and descriptive set theory,” Lect. Notes Math.,689, 151–170 (1978).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Algebra, Topologiya, Geometriya, Vol. 23, pp. 3–50, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanovei, V.G. The axiom of determinacy and the modern development of descriptive set theory. J Math Sci 40, 257–287 (1988). https://doi.org/10.1007/BF01092890

Download citation

Keywords

  • Modern Development
  • Modern Investigation