Advertisement

Ukrainian Mathematical Journal

, Volume 32, Issue 2, pp 143–146 | Cite as

Inclusion of the summation method ¦W, p ¦ in the method ¦A* ¦ and Tauberian theorems

  • A. F. Nagainik
Brief Communications
  • 16 Downloads

Keywords

Tauberian Theorem Summation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. H. Hardy, Divergent Series, Oxford Univ. Press (1949).Google Scholar
  2. 2.
    B. W. Jurkat and A. Peyerimhoff, “The consistency of Nörlund and Hausdorff methods,” Ann. Math.,62, 498–503 (1955).Google Scholar
  3. 3.
    B. Kwee, “The relation between Nörlund and generalized Abel summability,” J. London Math. Soc.,38, No. 4, 472–476 (1963).Google Scholar
  4. 4.
    K. M. Slepenchuk and N. I. Udalaya, “Absolute summability of series by matrix methods,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 65–73 (1974).Google Scholar
  5. 5.
    Z. Abraham, “Inclusion relation between power methods of limitation,” Pac. J. Math.,67, No. 1, 251–275 (1967).Google Scholar
  6. 6.
    B. Kwee, “Absolute regularity of the Nörlund mean,” J. Austral. Math. Soc.,5, 1–7 (1965).Google Scholar
  7. 7.
    A. Zygmund, “On certain integrals,” Trans. Am. Math. Soc.,55, No. 2, 170–204 (1944).Google Scholar
  8. 8.
    K. M. Slepenchuk, “Theorems of Tauberian type for absolute summability by Abelian methods,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 135–139 (1965).Google Scholar
  9. 9.
    N. Bhatt, “Tauberian theorems for absolute Nörlund summability,” Mat. Vestn.,1, No. 4, 333–334 (1964).Google Scholar
  10. 10.
    J. B. Tatchell, “On some integral transformations,” Proc. London Math. Soc.,3, 257–266 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • A. F. Nagainik
    • 1
  1. 1.Kiev Pedagogic InstituteUSSR

Personalised recommendations