Journal of Applied Electrochemistry

, Volume 22, Issue 4, pp 315–324 | Cite as

Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode

  • L. R. Czarnetzki
  • L. J. J. Janssen


On-site electrolysis of a weak alkaline solution of NaCl has been applied to an increasing extent for disinfection. To optimize the electrolytic cell and the electrolysis conditions, the current efficiency for hypochlorite, chlorate and oxygen formation at a commercial RuO2/TiO2 anode were determined under various conditions. It was found that for solution with low NaCl concentrations, (lower than 200 mol m−3), and at 298 K, solution flow velocity of 0.075 ms−1 and high current density, (higher than 2 kA m−2), hypochlorite formation is determined by mass transfer of chloride. The formation of chlorate in weakly alkaline media at a chlorine and oxygen-evolving anode is ascribed to two reactions, namely, the direct oxidation of chloride to chlorate and the conversion of hypochlorite. This is suggested to split the well-known electrochemical Foerster reaction into a chemical reaction for the conversion of hypochlorite in chlorate and the electrochemical oxidation reaction of water. It is proposed that in an acidic reaction layer at the anode the mechanism of chlorate formation may be given by the following:


Oxygen Physical Chemistry Chlorate Hypochlorite Alkaline Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



electrode surface area (m2)


concentration of speciesi (mol m−3)

ci, 0

ci attc=0 (mol m−3)


diffusion constant of speciesi (m2 s−1)


electrode potential versus saturated calomel electrode (V)


Faraday constant (C mol−1)


current (A)


current density (A m−2)


diffusion-limiting current density (A m−2)


slope ofni/c3 curve (m3 s−1)

kd, i

diffusion mass-transfer coefficient of speciesi (m s−1)

kd, f, i

kd, i at forced convection of solution and in the absence of bubble (m s−1) evolution


quantity of speciesi formed during the electrolysis (mol)


rate of formation for speciesi (mol s−1)

n4, S

n4 determined by diffusion limitation of hypochlorite (mol s−1)


time (s)


time of electrolysis (s)


absolute temperature (K)


average flow velocity of solution in the anodic compartment of the cell at the level of the leading edge of the electrode (m s−1)


current efficiency for speciesi

Φi, o

Φ i atte=0







electrolysis, electrode


forced convection




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Ibl and H. Vogt, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 2 (edited by J. O'M. Bockris, B. E. Conway, E. Yeager and R. E. White, Plenum Press, New York and London, (1981), p. 167.Google Scholar
  2. [2]
    D. M. Novak, B. V. Tilak and B. E. Conway, in ‘Modern Aspects of Electrochemistry’ Vol. 14 (edited by J. O'M. Bockris et al.), Plenum Press, New York (1988). pp. 195–318.Google Scholar
  3. [3]
    P. Hersch, British Patent 707 323 (awarded to the Mond Nickel Co., Ltd.), 14 April 1954.Google Scholar
  4. [4]
    W. J. Baker, J. F. Combs, T. L. Zinn, A. W. Wotring and R. F. Wall,Ind. Eng. Chem. 51 (1959) 727.Google Scholar
  5. [5]
    H. Thielemann,Mikrochimica Acta (Wien) (1971) 746.Google Scholar
  6. [6]
    T. Tang and G. Gordon,Anal. Chem. 52 (1980) 1430.Google Scholar
  7. [7]
    Oké—Idem, Environ. Sci. Technol. 18 (1984) 212.Google Scholar
  8. [8]
    D. IJspeerd, W. H. Willink and H. J. Henning,Fresenius Z. Anal. Chemie 288 (1977) 357.Google Scholar
  9. [9]
    H. Rilbe, in ‘Electrophoretic Techniques’, (edited by C. F. Simpson and M. Whittaker), Academic Press, London (1983) p. 1.Google Scholar
  10. [10]
    F. M. Everaerts and T. P. E. M. Verheggen, in ‘Electrophoretic Techniques’, (edited by C. F. Simpson and M. Whittaker), Academic Press, London (1983) p. 1.Google Scholar
  11. [11]
    L. J. J. Janssen,J. Appl. Electrochem. 17 (1987) 1177.Google Scholar
  12. [12]
    K. J. Vetter, ‘Elektrochmische Kinetik’, Springer Verlag, Berlin (1961), p. 153.Google Scholar
  13. [13]
    F. Foerster, ‘Elektrochemie wässriger Lösungen’, 4th ed., G. Bredig Barth, Leipzig (1923) p. 643.Google Scholar
  14. [14]
    L. R. Czarnetzki, Thesis, Eindhoven, University of Technology (1989).Google Scholar
  15. [15]
    L. R. Czarnetzki and L. J. J. Janssen, in ‘Modern Chlor-Alkali Technology’, Vol. 4 (edited by N. M. Prout and J. S. Moorhouse), (1990) p. 313.Google Scholar
  16. [16]
    D. Landolt and N. Ibl,Electrochim. Acta 15 (1970) 1165.Google Scholar
  17. [17]
    N. Ibl and D. Landolt,J. Electrochem. Soc. 115 (1968) 713.Google Scholar
  18. [18]
    A. Rius and J. Llopis,An. Fis Quin 41 (1945) 1030.Google Scholar
  19. [19]
    V. A. Shlyapnikov,Sov. Electrochem. 7 (1971) 1080.Google Scholar
  20. [20]
    L. R. Czarnetzki and L. J. J. Janssen,Electrochim. Acta 33 (1988) 561.Google Scholar
  21. [21]
    B. K. Sadananda Rao and V. S. Somanchi,J. Techn (India) 21 (1983) 529.Google Scholar
  22. [22]
    A. Tasaka and T. Tojo,J. Electrochem. Soc. 132 (1985) 1855.Google Scholar
  23. [23]
    W. M. Latimer, ‘The oxidation states of the elements and their potentials in aqueous solution’ 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, (1956).Google Scholar
  24. [24]
    N. Munichandraih and S. Sathyanarayana,J. Appl. Electrochem. 17 (1987) 33.Google Scholar
  25. [25]
    J. C. Morris,J. Phys. Chem. 70 (1966) 3798.Google Scholar
  26. [26]
    M. W. Lister,Can. J. Chem. 34 (1956) 465.Google Scholar
  27. [27]
    Idem 30 (1952) 879.Google Scholar
  28. [28]
    J. D'Ans and H. E. Freund,Z. Elektrochemie 61 (1957) 10.Google Scholar
  29. [29]
    D. V. Kohoulina and L. J. Krishtalik,Elektrokhymiya 7 (1971) 346.Google Scholar
  30. [30]
    B. V. Tilak, K. Viswanathan and C. G. Radar,J. Electrochem. Soc. 128 (1981) 1228.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • L. R. Czarnetzki
    • 1
  • L. J. J. Janssen
    • 1
  1. 1.Faculty of Chemical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations