Advertisement

Ukrainian Mathematical Journal

, Volume 35, Issue 3, pp 319–321 | Cite as

Existence theorem for multiplicative measures

  • A. A. Kalyuzhnyi
Brief Communications
  • 17 Downloads

Keywords

Existence Theorem Multiplicative Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. M. Berezanskii and S. G. Krein, “Continual algebras,” Dokl. Akad. Nauk SSSR,72, No. 1, 5–8 (1950).Google Scholar
  2. 2.
    Yu. M. Berezanskii and S. G. Krein, “Hypercomplex systems with compact basis,” Ukr. Mat. Zh.,3, No. 2, 184–204 (1951).Google Scholar
  3. 3.
    Yu. M. Berezanskii and S. G. Krein, “Hypercomplex systems with continual basis,” Usp. Mat. Nauk,12, No. 1, 147–152 (1957).Google Scholar
  4. 4.
    C. Ionescu Tulcea and A. B. Simon, “Spectral representations and unbounded convolution operators,” Proc. Nat. Acad. Sci.,45, No. 12, 1765–1767 (1959).Google Scholar
  5. 5.
    R. Spector, “Measures invariantes sur les hypergroupes,” Trans. Am. Math. Soc.,239, 147–165 (1978).Google Scholar
  6. 6.
    N. Dunford and J. T. Schwartz, Linear Operators. General Theory, Wiley (1958).Google Scholar
  7. 7.
    M. G. Krein and M. A. Rutman, “Linear operators leaving a cone invariant in a Banach space,” Usp. Mat. Nauk,3, No. 1, 3–95 (1948).Google Scholar
  8. 8.
    A. D. Aleksandrov, “Additive set functions in abstract spaces. III,” Mat. Sb.,13, 169–238 (1943).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. A. Kalyuzhnyi
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUSSR

Personalised recommendations