Plant Foods for Human Nutrition

, Volume 39, Issue 3, pp 223–234 | Cite as

Limiting amino acids in raw and processed amaranth grain protein from biological tests

  • Ricardo Bressani
  • Luiz G. Elias
  • Arnoldo Garcia-Soto


Amino acid supplementation studies with young rats were carried out using raw and processed amaranth grain (A. cruentus) of dark- and cream- or light-colored seeds. The results of various studies repeatedly indicated that threonine is the most limiting amino acid in raw and processed, dark and cream-colored grain. Protein quality as measured either as NPR or PER was improved by threonine addition alone or with other amino acids and decreased liver fat to values similar to those measured with casein. This finding contradicts the reports that state that leucine, determined by chemical score, is the most limiting amino acid. Leucine addition alone or with other amino acids did not improve protein quality. The study confirmed cream-colored grain to be nutritionally superior to dark grain and that properly processed grain, light- or dark-colored, has higher protein quality than raw grain.

Key words

amaranth grain dark- and cream-colored seed limiting amino acids raw and processed amaranth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AOAC (1970) Official Methods of Analysis, 11th edn. Washington DC: Association of Official Analytical Chemists, 957 ppGoogle Scholar
  2. 2.
    Becker R, Wheeler EL, Lorenz K, Stafford AE, Grosjean OK, Betschart AA, Saunders RM (1981) A compositional study of amaranth grain. J Food Sci 46: 1175–1180Google Scholar
  3. 3.
    Bender AE, Doel BN (1957) Biological evaluation of proteins: A new aspect. Brit J Nutr Vol 11: 140–148Google Scholar
  4. 4.
    Betschart A, Wood Irving D, Shepherd AD, Saunders RM (1985)Amaranthus cruentus: milling characteristics, distribution of nutrients within seed components, and the effects of temperature on nutritional quality. J Food Sci 46(4): 1181–1187Google Scholar
  5. 5.
    Bressani R, González JM, Elías LG, Melgar M (1987) Effect of fertilizer application on the yield, protein and fat content, and protein quality of raw and cooked grain of three amaranth species. (Qual Plant) Plant Fds Hum Nutr 37: 59–67Google Scholar
  6. 6.
    Bressani R, González JM, Zúñiga J, Breuner M, Elías LG (1987) Yield, selected chemical composition and nutritive value of 14 selections of amaranth grain representing four species. J Sci Food Agric 38: 347–356Google Scholar
  7. 7.
    Hegsted DM, Mills RC, Elvehjem CA, Hart EB (1941) Choline in the nutrition of chicks. J Biol Chem 138: 459–66Google Scholar
  8. 8.
    Howe EE, Jansen GR, Gilfillan EW (1965) Amino acid supplementation of cereal grains as related to the world food supply. Am J Clin Nutr 16: 315–320Google Scholar
  9. 9.
    Imeri AG, Flores R, Elias LG, Bressani R (1987) Efecto del procesamiento y de la suplementación con amino ácidos sobre la calidad proteínica del amaranto (Amaranthus caudatus). Arch Latinoamer Nutr 37(1): 160–173Google Scholar
  10. 10.
    Imeri A, González JM, Flores R, Elías LG, Bressani R (1987) Variabilidad genética en rendimiento y correlaciones entre rendimiento, tamaño del grano, composición química y calidad de la proteína de 25 variedades del amaranto (Amaranthus caudatus). Arch Latinoamer Nutr 37(1): 132–146Google Scholar
  11. 11.
    Manna L, Hauge SM (1953) A possible relationship of vitamin B12 to orotic acid. J Biol Chem 202: 91–96Google Scholar
  12. 12.
    Mendoza C, Bressani R (1987) Nutritional and functional characteristics of extrusioncooked amaranth flour. Cereal Chem 64: 218–22Google Scholar
  13. 13.
    National Research Council (1984) Amaranth: modern prospects for an ancient crop. Washington DC: National Academy PressGoogle Scholar
  14. 14.
    Pedersen B, Kalinowski LS, Eggum BO (1987) The nutritive value of amaranth grain (Amaranthus caudatus): 1. Protein and minerals of raw and processed grain. (Qual Plant) Plant Fds Hum Nutr 36: 309–324Google Scholar
  15. 15.
    Pedersen B, Hallgren L, Hansen I, Eggum BO (1987) The nutritive value of amaranth grain (Ameranthus caudatus): 2. As a supplement to cereals. (Qual Plant) Plant Fds Hum Nutr 36: 325–334Google Scholar
  16. 16.
    Rosenberg HR, Culik R, Echert RE (1959) Lysine and threonine supplementation of rice. J Nutr 69: 217–228Google Scholar
  17. 17.
    Sánchez-Marroquín A (1980) Potencialidad agroindustrial del amaranto. Centros de Estudios Económics y Sociales del Tercer Mundo, MéxicoGoogle Scholar
  18. 18.
    Sánchez-Marroquín A, Pérez-Gutiérrez JL, Briones JF, Kuri J (1986) Potencialidad de la hoja de amaranto en la alimentación, p. 307–320. In: El amaranto (Amaranthus spp. (Alegría)). Su cultivo y aprovechamiento. Chapingo, MéxicoGoogle Scholar
  19. 19.
    Saunders RM, Becker R (1983) Amaranthus. A potential food and feed resource. In: Pomeranz (ed.) Advances in Cereal Science and Technology, Vol. 6, Chapter 7. St Paul Min: American Association of Cereal ChemistsGoogle Scholar
  20. 20.
    Teutonico RA, Knorr D (1985) Amaranth: comparison, properties and applications of a rediscovered food crop. Food Technol 39: 44–60Google Scholar
  21. 21.
    WHO (1973) Energy and protein requirements. Report of a Joint FAO/WHO ad-hoc Expert Committee, Tec Rep Ser 522, Geneva: World Health OrganizationGoogle Scholar
  22. 22.
    López M, Bressani R (1987) The true metabolizable energy of amaranth (Amaranthus spp.) seed in poultry. Amaranth Newsletter No. 3, Sept.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Ricardo Bressani
    • 1
  • Luiz G. Elias
    • 1
  • Arnoldo Garcia-Soto
    • 1
  1. 1.Institute of Nutrition of Central America and Panama (INCAP)GuatemalaGuatemala, C.A.

Personalised recommendations