Advertisement

Journal of Soviet Mathematics

, Volume 5, Issue 5, pp 612–687 | Cite as

Boundary properties of holomorphic functions of several complex variables

  • G. M. Khenkin
  • E. M. Chirka
Article

Keywords

Holomorphic Function Complex Variable Boundary Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. A. Aizenberg, “Certain boundary properties of the analytic functions of many complex variables,” in: Research on Contemporary Problems in the Theory of Functions of a Complex Variable [in Russian], Fizmatgiz, Moscow (1961), pp. 239–241.Google Scholar
  2. 2.
    L. A. Aizenberg, “Polynomials, orthogonal holomorphic functions of several complex variables, and the generalization of the theorems of Hartogs and of the Rieszs,” in: Holomorphic Functions of Several Complex Variables [in Russian], Krasnoyarsk (1972), pp. 5–19.Google Scholar
  3. 3.
    A. M. Aronov and Sh. A. Dautov, “On integral representations for complex differential forms,” Sibirsk. Matem. Zh.,13, No. 4, 739–474 (1972).Google Scholar
  4. 4.
    V. A. Baikov, “On one boundary theorem for holomorphic functions of two complex variables,” Uspekhi Matem. Nauk,24, No. 5, 221–222 (1969).Google Scholar
  5. 5.
    N. N. Bogolyubov, B. V. Medvedev, and M. K. Polivanov, Questions in the Theory of Dispersion Relations [in Russian], Fizmatgiz, Moscow (1958), 203 pp.Google Scholar
  6. 6.
    R. É. Val'skii, “On measures orthogonal to analytic functions in Cn,” Dokl. Akad. Nauk SSSR,198, No. 3, 502–505 (1971).Google Scholar
  7. 7.
    V. S. Vinogradov, “On an analog of the Cauchy integral for analytic functions of several complex variables,” Dokl. Akad. Nauk SSSR,178, No. 2, 282–285 (1968).Google Scholar
  8. 8.
    A. G. Vitushkin, “Conditions on a set, necessary and sufficient for the possibility of uniform approximation by analytic (or rational) functions of every function continuous on this set,” Dokl. Akad. Nauk SSSR,128, No. 1, 17–20 (1959).Google Scholar
  9. 9.
    A. G. Vitushkin, “Analytic capacity of sets in approximation theory problems,” Uspekhi Matem. Nauk,22, No. 6, 141–199 (1967).Google Scholar
  10. 10.
    A. G. Vitushkin, “On one problem of W. Rudin,” Dokl. Akad. Nauk SSSR,213, No. 1, 14–15 (1973).Google Scholar
  11. 11.
    V. S. Vladimirov, Methods in the Theory of Functions of Several Complex Variables [in Russian], Nauka, Moscow (1964), 411 pp.Google Scholar
  12. 12.
    V. S. Vladimirov, “Bogolyubov's ‘edge-of-the-wedge’ theorem, its development and applications,” in: Problems of Theoretical Physics [in Russian], Nauka, Moscow (1969), pp. 61–67, 427.Google Scholar
  13. 13.
    V. S. Vladimirov, “Holomorphic functions with a nonnegative imaginary part in a tubular region over a cone,” Matem. Sb., No. 1, 128–152 (1969).Google Scholar
  14. 14.
    T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1969), 257 pp; Russian translation: Mir, Moscow (1973), 334 pp.Google Scholar
  15. 15.
    R. S. Gunning and H. Rossi, Analytic Functions of Several Complex Variables [Russian translation], Mir, Moscow (1969), 395 pp.Google Scholar
  16. 16.
    S. G. Gindikin, “Analysis in homogeneous domains,” Uspekhi Matem. Nauk,19, No. 4, 3–92 (1964).Google Scholar
  17. 17.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, 2nd ed. [in Russian], Nauka, Moscow (1966), 628 pp.Google Scholar
  18. 18.
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1962), 217 pp; Russian translation: Izd. Inostr. Lit., Moscow (1963), 311 pp.Google Scholar
  19. 19.
    Sh. A. Dautov, “On forms orthogonal to holomorphic functions when integrating along the boundary of a strongly pseudoconvex domain,” Dokl. Akad. Nauk SSSR,203, No. 1, 16–18 (1972).Google Scholar
  20. 20.
    Sh. A. Dautov, “On forms orthogonal to holomorphic functions and similar questions,” Funktsional'. Analiz i Ego Prilozhen.,6, No. 4, 81–82 (1972).Google Scholar
  21. 21.
    Sh. A. Dautov, “On\(\bar \partial \)-closed forms of type (p, n−1) as analogs of holomorphic functions of one complex variable,” in: Holomorphic Functions of Many Complex Variables [in Russian], Krasnoyarsk (1972), pp. 21–36.Google Scholar
  22. 22.
    M. A. Evgrafov, Analytic Functions, 2nd ed., revised and augmented [in Russian], Nauka, Moscow (1968), 471 pp.Google Scholar
  23. 23.
    A. Zygmund, Trigonometric Series, Vol. II [Russian translation], Mir, Moscow (1965), 537 pp.Google Scholar
  24. 24.
    M. V. Keldysh and M. A. Lavrent'ev, “On the uniqueness of the Neumann problem,” Dokl. Akad. Nauk SSSR,16, 151–152 (1937).Google Scholar
  25. 25.
    J. Leray, Differential and Integral Calculus on Complex Analytic Manifolds [Russian translation], Izd. Inostr. Lit., Moscow (1961), 140 pp.Google Scholar
  26. 26.
    G. A. Margulis, “Correspondence of boundaries under biholomorphic mappings of multidimensional domains,” Repts. Abstr. All-Union Conf. Function Theory [in Russian], Khar'kov (1971), 137–138.Google Scholar
  27. 27.
    L. A. Markushevich, “Approximation by polynomials of continuous functions on Jordan arcs in the space Kn of n complex variables,” Sibirsk. Matem. Zh.,2, No. 2, 237–260 (1961).Google Scholar
  28. 28.
    B. S. Mityagin and G. M. Khenkin, “Linear problems of complex analysis,” Uspekhi Matem. Nauk,26, No. 4, 93–152 (1971).Google Scholar
  29. 29.
    A. I. Petrosyan, “Uniform approximation of functions by polynomials on Weil polytopes,” Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 6, 1241–1261 (1970).Google Scholar
  30. 30.
    S. I. Pinchuk, “Proper holomorphic mappings of strongly pseudoconvex domains,” Sibirsk. Matem. Zh.,15, No. 4, 909–918 (1974).Google Scholar
  31. 31.
    S. I. Pinchuk, “Boundary uniqueness theorem for holomorphic functions of several complex variables,” Matem. Zametki,15, No. 2, 205–212 (1974).Google Scholar
  32. 32.
    S. I. Pinchuk, “Bogolyubov's ‘edge-of-the-wedge’ theorem for generating manifolds,” Matem. Sb., No. 3, 468–482 (1974).Google Scholar
  33. 33.
    P. L. Polyakov, “Banach cohomologies of piecewise strongly pseudoconvex domains,” Matem. Sb., No. 2, 238–255 (1972).Google Scholar
  34. 34.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow-Leningrad (1950).Google Scholar
  35. 35.
    I. I. Privalov and P. I. Kuznetsov, “Boundary problems and various classes of harmonic and subharmonic functions defined in arbitrary regions,” Mat. Sb.,6, No. 3, 345–376 (1939).Google Scholar
  36. 36.
    I. I. Pyatetskii-Shapiro, “Geometry and classification of bounded homogeneous domains,” Uspekhi Matem. Nauk,20, No. 2, 3–51 (1965).Google Scholar
  37. 37.
    A. V. Romanov and G. M. Khenkin, “Exact Hölder estimates of solutions of the\(\bar \partial \)-equation,” Izv. Akad. Nauk SSSR, Ser. Matem.,35, No. 5, 1171–1183 (1971).Google Scholar
  38. 38.
    V. N. Senichkin, “Examples of a thick polynomially-convex compact subset of space C2 with a connected interior, on which not every continuous function, analytic at the interior points, can be uniformly approximated by polynomials,” Zap. Nauchn. Seminarov, Leningr. Otd. Matem. Inst. Akad. Nauk SSSR,22, 199–201 (1971).Google Scholar
  39. 39.
    V. N. Senichkin, “Algebra of analytic functions, continuous on a sphere, with a perfect set of singularities and polynomial approximations on thick compacta in C2,” Zap. Nauchn. Seminarov, Leningr. Otd. Matem. Inst. Akad. Nauk SSSR,30, 172–173 (1972).Google Scholar
  40. 40.
    E. D. Solomentsev, “On certain classes of subharmonic functions,” Izv. Akad. Nauk SSSR, Ser. Matem., No. 5–6, 571–582 (1938).Google Scholar
  41. 41.
    A. E. Tumanov, “On boundary values of holomorphic functions of several complex variables,” Uspekhi Matem. Nauk,29, No. 4, 158–159 (1974).Google Scholar
  42. 42.
    M. V. Fedoryuk, “On approximations of continuous functions by polynomials on smooth curves in an n-dimensional complex space,” Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauk, No. 2, 78–82 (1959).Google Scholar
  43. 43.
    B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables [in Russian], Nauka, Moscow (1975).Google Scholar
  44. 44.
    B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Complex Variables [in Russian], Fizmatgiz, Moscow (1963), 427 pp.Google Scholar
  45. 45.
    G. M. Khenkin, “Banach spaces of analytic functions in a ball and in a bicylinder are nonisomorphic,” Funktsional'. Analiz i Ego Prilozhen.,2, No. 4, 82–91 (1968).Google Scholar
  46. 46.
    G. M. Khenkin, “Integral representation of functions holomorphic in strongly pseudoconvex domains and certain applications,” Matem. Sb.,78, No. 4, 611–632 (1969).Google Scholar
  47. 47.
    G. M. Khenkin, “Integral representation of functions in strongly pseudoconvex domains and applications to the\(\bar \partial \)-problem,” Matem. Sb., No. 2, 300–308 (1970).Google Scholar
  48. 48.
    G. M. Khenkin, “Approximation of functions in pseudoconvex domains and Leibenzon's theorem,” Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. et Phys.,19, No. 1, 37–42 (1971).Google Scholar
  49. 49.
    G. M. Khenkin, “Uniform estimate of a solution of the\(\tilde \partial \)-problem in a Weil domain,” Uspekhi Matem. Nauk,26, No. 3, 211–212 (1971).Google Scholar
  50. 50.
    G. M. Khenkin, “Extension of bounded holomorphic functions from a submanifold of general position in a strongly pseudoconvex domain,” Izv. Akad. Nauk SSSR, Ser. Matem.,36, No. 3, 540–567 (1972).Google Scholar
  51. 51.
    G. M. Khenkin, “An analytic polyhedron is holomorphically not equivalent to a strongly pseudoconvex domain,” Dokl. Akad. Nauk SSSR,210, No. 5, 1026–1029 (1973).Google Scholar
  52. 52.
    L. Hörmander, Introduction to the Theory of Functions of Several Complex Variables [Russian translation], Mir, Moscow (1968), 279 pp.Google Scholar
  53. 53.
    E. M. Chirka, “Approximation of continuous functions by functions holomorphic on Jordan arcs in Cn,” Dokl. Akad. Nauk SSSR,167, No. 1, 38–40 (1966).Google Scholar
  54. 54.
    E. M. Chirka, “Approximation by holomorphic functions on smooth manifolds in Cn,” Matem. Sb.,78, No. 1, 101–123 (1969).Google Scholar
  55. 55.
    E. M. Chirka, “The Lindelöf and Fatou theorems in Cn,” Matem. Sb.,92, No. 4, 622–644 (1973).Google Scholar
  56. 56.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1969), 576 pp.Google Scholar
  57. 57.
    H. Alexander, “Extending bounded holomorphic functions from certain subvarieties of a polydisc,” Pacif. J. Math.,29, No. 3, 485–490 (1969).Google Scholar
  58. 58.
    H. Alexander, “Uniform algebras on curves,” Bull. Amer. Math. Soc.,75, No. 6, 1269–1272 (1969).Google Scholar
  59. 59.
    H. Alexander, “Polynomial approximation and hulls in sets of finite linear measure in Cn,” Amer. J. Math.,93, No. 1, 65–74 (1971).Google Scholar
  60. 60.
    H. Alexander, “Polynomial approximation and analytic structure,” Duke Math. J.,38, No. 1, 123–135 (1971).Google Scholar
  61. 61.
    A. Andreotti and C. D. Hill, “Complex characteristic coordinates and tangential Cauchy-Riemann equations,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,26, No. 2, 299–324 (1972).Google Scholar
  62. 62.
    A. Andreotti and C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. Part I. Reduction to vanishing theorems,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,26, No. 2, 325–363 (1972).Google Scholar
  63. 63.
    A. Andreotti and C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem, Part II. Vanishing theorems,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e. Mat.,26, No. 4, 747–806 (1972).Google Scholar
  64. 64.
    A. Andreotti and W. Stoll, “The extension of bounded holomorphic functions from hyper-surfaces in a polycylinder,” Rice Univ. Stud.,56, No. 2, 199–222 (1970).Google Scholar
  65. 65.
    S. Bergman, “Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I–II,” J. Reine und Angew. Math.,169, 1–42 (1933);172, 89–128 (1935).Google Scholar
  66. 66.
    S. Bergman, “The kernel function and conformal mapping,” Amer. Math. Soc. Survey, No. 5, 7–161 (1950).Google Scholar
  67. 67.
    A. Beurling, “Analytic continuation across a linear boundary,” Acta Math.,128, No. 3–4, 153–182 (1972).Google Scholar
  68. 68.
    E. Bishop, “Subalgebras of functions on a Riemann surface,” Pacif. J. Math.,8, No. 1, 29–50 (1958).Google Scholar
  69. 69.
    E. Bishop, “A minimal boundary for function algebras,” Pacif. J. Math.,9, No. 3, 629–642 (1959).Google Scholar
  70. 70.
    E. Bishop, “A general Rudin-Carleson theorem,” Proc. Amer. Math. Soc.,13, No. 1, 140–143 (1962).Google Scholar
  71. 71.
    E. Bishop, “Analyticity in certain Banach algebras,” Trans. Amer. Math. Soc.,102, No. 3, 507–544 (1962).Google Scholar
  72. 72.
    E. Bishop, “Differentiable manifolds in complex Euclidean space,” Duke Math. J.,32, No. 1, 1–21 (1965).Google Scholar
  73. 73.
    J.-E. Björk, “Analytic structures in the maximal ideal space of a function algebra,” Ark. Math.,8, No. 23, 239–244 (1971).Google Scholar
  74. 74.
    S. Bochner, “Analytic and meromorphic continuation by means of Green's formula,” Ann. Math.,44, 652–673 (1943).Google Scholar
  75. 75.
    S. Bochner, “Group invariance and Cauchy's formula in several variables,” Ann. Math.,45, 686–701 (1944).Google Scholar
  76. 76.
    S. Bochner, “Boundary values of analytic functions in several variables and of almost periodic functions,” Ann. Math.,45, 708–722 (1944).Google Scholar
  77. 77.
    H. J. Bremermann, “On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains,” Trans. Amer. Math. Soc.,91, No. 2, 246–276 (1959).Google Scholar
  78. 78.
    B. Cole and R. M. Range, “A-measures on complex manifolds and some applications,” J. Funct. Anal.,11, No. 4, 393–400 (1972).Google Scholar
  79. 79.
    A. M. Davie and B. K. Øksendal, “Peak interpolation sets for some algebras of analytic functions,” Pacif. J. Math.,41, No. 1, 81–87 (1972).Google Scholar
  80. 80.
    K. Diederich, “Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebiete,” Math. Ann.,187, No. 1, 9–36 (1970).Google Scholar
  81. 81.
    K. Diederich, “Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten,” Math. Ann.,203, No. 2, 129–170 (1973).Google Scholar
  82. 82.
    A. Douady, “Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné,” Ann. Inst. Fourier,16, No. 1, 1–95 (1966).Google Scholar
  83. 83.
    D. A. Eisenmann, “Proper holomorphic self-maps of the unit ball,” Math. Ann.,190, No. 4, 298–305 (1971).Google Scholar
  84. 84.
    H. Federer, Geometric Measure Theory (Grundlehren Math. Wiss., 153), Springer-Verlag, Berlin-Heidelberg-New York (1969), 676 pp.Google Scholar
  85. 85.
    G. Fichera, “Caratterizzazione della traccia, sulla frontiera di un campo, di una funzione analitica di più variabili complesse,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur.,22, No. 6, 706–715 (1957).Google Scholar
  86. 86.
    W. Fischer and I. Lieb, “Lokale Kerne und beschränkle Lösungen für den\(\bar \partial \)-operator auf q-konvexen Gebieten,” Math. Ann.,208, No. 3, 249–265 (1974).Google Scholar
  87. 87.
    G. B. Foland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Ann. Math. Stud., No. 75, Princeton Univ Press, Princeton, N. J. (1972), 146 pp.Google Scholar
  88. 88.
    F. Forelli, “Measures orthogonal to polydisc algebras,” J. Math. and Mech.,17, No. 11, 1073–1086 (1968).Google Scholar
  89. 89.
    M. Freeman, “Some conditions for uniform approximation on a manifold,” in: F. Birtel (Ed.), Function Algebras, (Proc. Internat. Symp. Function Algebras, Tulane Univ.), Scott-Foresman and Co., Chicago (1966).Google Scholar
  90. 90.
    M. Freeman, “Uniform approximation on a real-analytic manifold,” Trans. Amer. Math. Soc.,143, 545–553 (1969).Google Scholar
  91. 91.
    M. Freeman, “Tangential Cauchy-Riemann equations and uniform approximations,” Pacif. J. Math.,33, No. 1, 101–108 (1970).Google Scholar
  92. 92.
    M. Freeman and R. Harvey, “A compact set that is locally holomorphically convex but not holomorphically convex,” Pacif. J. Math.,48, No. 1, 77–81 (1973).Google Scholar
  93. 93.
    T. W. Gamelin, “Polynomial approximation on thin sets,” Lect. Notes Math.,184, 50–78 (1971).Google Scholar
  94. 94.
    P. R. Garabedian and D. C. Spencer, “Complex boundary value problem,” Trans. Amer. Math. Soc.,73, No. 2, 223–242 (1952).Google Scholar
  95. 95.
    L. Garding and L. Hörmander, “Strongly subharmonic functions,” Math. Scand.,15, No. 1, 93–96 (1964).Google Scholar
  96. 96.
    A. M. Gleason, “The abstract theorem of Cauchy-Weil,” Pacif. J. Math.,12, No. 2, 511–525 (1962).Google Scholar
  97. 97.
    J. Glicksberg, “The abstract F. and M. Riesz theorem,” J. Funct. Anal.,1, No. 1, 109–122 (1967).Google Scholar
  98. 98.
    I. Graham, “Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in Cn with smooth boundary,” Bull. Amer. Math. Soc.,79, 749–751 (1973).Google Scholar
  99. 99.
    H. Grauert, “Bemerkenswerte pseudokonvexe Mannigfaltigkeiten,” Math. Z.,81, No. 5, 317–391 (1963).Google Scholar
  100. 100.
    H. Grauert and I. Lieb, “Das Ramirersche Integral und die Lösung der Gleichung\(\bar \partial \) f = α imbereich der beschränkten Formen,” Rice Univ. Stud.,56, No. 2, 29–50 (1970).Google Scholar
  101. 101.
    S. J. Greenfield, “Cauchy-Riemann equations in several variables,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,22, No. 2, 275–314 (1968).Google Scholar
  102. 102.
    S. J. Greenfield, “Upper bounds on the dimension of extensibility of submanifolds in Cn,” Proc. Amer. Math. Soc.,23, No. 1, 185–189 (1969).Google Scholar
  103. 103.
    F. R. Harvey and R. O. Wells, Jr., “Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold,” Math. Ann.,197, No. 4, 287–318 (1972).Google Scholar
  104. 104.
    F. R. Harvey and R. O. Wells, Jr., “Zero sets of nonnegative strictly plurisubharmonic functions,” Math. Ann.,201, No. 2, 165–170 (1973).Google Scholar
  105. 105.
    C. D. Hill, “A Kontinuitätssatz for\(\bar \partial _M \) and Lewy extendibility,” Indiana Univ. Math. J.,22, No. 4, 339–353 (1972).Google Scholar
  106. 106.
    J. J. Hirschfelder, “The bidisc is not biholomorphic to the ball,” Amer. Math. Mo.,78, No. 2, 174–175 (1971).Google Scholar
  107. 107.
    K. Hoffman and H. Rossi, “The minimal boundary for an analytic polyhedron,” Pacif. J. Math.,12, No. 4, 1347–1353 (1962).Google Scholar
  108. 108.
    L. Hörmander, “L2-estimates and existence theorems for the operator,” Acta Math.,11, No. 1–2, 89–152 (1965).Google Scholar
  109. 109.
    L. Hörmander, “Generators of some rings of analytic functions,” Bull. Amer. Math. Soc.,73, No. 6, 943–949 (1967).Google Scholar
  110. 110.
    L. Hörmander, “LP-estimates for (pluri-) subharmonic functions,” Math. Scand.,20, No. 1, 65–78 (1967).Google Scholar
  111. 111.
    L. Hörmander and J. Wermer, “Uniform approximation on compact sets in Cn,” Math. Scand.,23, No. 1, 5–21 (1968).Google Scholar
  112. 112.
    E. Kallin, “A nonlocal function algebra,” Proc. Nat. Acad. Sci. USA,49, No. 6, 821–824 (1963).Google Scholar
  113. 113.
    N. Kerzman, “Hölder and LP-estimates for solutions of the\(\bar \partial \)-equation in strongly pseudoconvex domains,” Commun. Pure and Appl. Math.,24, No. 3, 301–379 (1971).Google Scholar
  114. 114.
    N. Kerzman, “The Bergman kernel function. Differentiability at the boundary,” Math. Ann.,195, No. 2, 149–158 (1972).Google Scholar
  115. 115.
    N. Kerzman, “Remarks on estimates for the\(\bar \partial \) equation,” Lect. Notes Math.,336, 111–124 (1973).Google Scholar
  116. 116.
    A. W. Knapp and E. M. Stein, “Intertwining operators for semisimple groups,” Ann. Math.,93, No. 3, 489–578 (1971).Google Scholar
  117. 117.
    S. Kabayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York (1970), 148 pp.Google Scholar
  118. 118.
    J. J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. I,” Ann. Math.,78, No. 1, 112–148 (1963).Google Scholar
  119. 119.
    J. J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. II,” Ann. Math.,79, No. 3, 450–472 (1964).Google Scholar
  120. 120.
    J. J. Kohn, “Boundaries of complex manifolds,” Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag, Berlin-Heidelberg-New York (1965), pp. 81–94.Google Scholar
  121. 121.
    J. J. Kohn, “Integration of complex vector fields,” Bull. Amer. Math. Soc.,78, No. 1, 1–11 (1972).Google Scholar
  122. 122.
    J. J. Kohn, “Boundary behavior of\(\bar \partial \) on weakly pseudoconvex manifolds of dimension two,” J. Different. Geom.,6, No. 4, 523–542 (1972).Google Scholar
  123. 123.
    J. J. Kohn, “Global regularity for\(\bar \partial \) on weakly pseudo-convex manifolds,” Trans. Amer. Math. Soc.,181, 273–292 (1973).Google Scholar
  124. 124.
    J. J. Kohn and L. Nirenberg, “A pseudo-convex domain not admitting a holomorphic support function,” Math. Ann.,201, No. 3, 265–268 (1973).Google Scholar
  125. 125.
    J. J. Kohn and H. Rossi, “On the extension of holomorphic functions from the boundary of a complex manifold,” Ann. Math.,81, No. 3, 451–472 (1965).Google Scholar
  126. 126.
    H. König and G. L. Seever, “The abstract F. and M. Riesz theorem,” Duke Math. J.,36, No. 4, 791–800 (1969).Google Scholar
  127. 127.
    W. Koppelman, “The Cauchy integral for functions of several complex variables,” Bull. Amer. Math. Soc.,73, No. 3, 373–377 (1967).Google Scholar
  128. 128.
    W. Koppleman, “The Cauchy integral for differential forms,” Bull. Amer. Math. Soc.,73, No. 4, 554–556 (1967).Google Scholar
  129. 129.
    A. Korányi, “Harmonic functions on Hermitian hyperbolic space,” Trans. Amer. Math. Soc.,135, 507–516 (1969).Google Scholar
  130. 130.
    A. Korányi and E. M. Stein, “Fatou's theorem for generalized halfplanes,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,22, No. 1, 107–112 (1968).Google Scholar
  131. 131.
    A. Korànyi and E. M. Stein, “H2 spaces of generalized half-planes,” Stud. Math. (PRL),44, No. 4, 379–388 (1972).Google Scholar
  132. 132.
    A. Korányi and S. Vagi, “Singular integrals on homogeneous spaces and some problems of classical analysis,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,25, No. 4, 575–648 (1972).Google Scholar
  133. 133.
    G. Laville, “Résolution du Boundary behavior of ∂\(\bar \partial \) on weakly pseudoconvex manifolds of dimension two avec croissance dans des ouverts pseudoconvexes étoilés de Cn,” C. R. Acad. Sci. Paris,274, No. 7, A554-A556 (1972).Google Scholar
  134. 134.
    J. Leray, “Fonction de variables complexes: représentation comme somme de puissances negatives de fonctions linéaries,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur.,20, No. 5, 589–590 (1956).Google Scholar
  135. 135.
    H. Lewy, “On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables,” Ann. Math.,64, No. 3, 514–522 (1956).Google Scholar
  136. 136.
    H. Lewy, “On hulls of holomorphy,” Commun. Pure and Appl. Math.,13, No. 4, 587–591 (1960).Google Scholar
  137. 137.
    J. Lieb, “Ein Approximationssatz auf streng pseudokonvexen Gebieten,” Math. Ann.,184, 56–60 (1969).Google Scholar
  138. 138.
    J. Lieb, “Die Cauchy-Riemannsehen Differentialgleichungen auf streng pseudokonvexen Gebieten: Beschränkte Lösungen,” Math. Ann.,190, No. 1, 6–44 (1970).Google Scholar
  139. 139.
    J. Lieb, “Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten: Stetige Randwerte,” Math. Ann.,139, No. 3, 241–256 (1972).Google Scholar
  140. 140.
    L. A. Lindahl, “Fatou's theorem for symmetric spaces,” Ark. Math.,10, 33–47 (1972).Google Scholar
  141. 141.
    P. Malliavin, “Comportement à la frontiàre distinguée d'une fonction analytique de plusiers variables,” C. R. Acad. Sci. Paris,268, No. 7, 380–381 (1969).Google Scholar
  142. 142.
    P. Malliavin, “Sur la répartition des zéros d'une fonction de la classe de Nevanlinna dans le polydisque,” C. R. Acad. Sci. Paris,271, No. 5, A313-A315 (1970).Google Scholar
  143. 143.
    A. Martineau, “Distributions et valeurs au bord des fonctions holomorphes,” Proc Internat. Summer Inst., Lisbon (1964).Google Scholar
  144. 144.
    E. Martinelli. “Sulla determinazione di una funzione analitica di più variabili complesse in un campo, assegnatane la traccia sulla frontiera,” Ann. Mat. Pura ed Appl.,55, 191–202 (1961).Google Scholar
  145. 145.
    C. B. Morrey, Jr., “The analytic embedding of abstract real analytic manifolds,” Ann. Math.,68, No. 1, 159–201 (1958).Google Scholar
  146. 146.
    R. Narasimhan, “Compact analytical varieties,” Enseign. Math.,14, No. 1, 75–98 (1968).Google Scholar
  147. 147.
    R. Nirenberg, “On the H. Lewy extension phenomenon,” Trans. Amer. Math. Soc.,168, 337–356 (1972).Google Scholar
  148. 148.
    R. Nirenberg, “The cohomology of restrictions of the Global regularity for\(\bar \partial \) on weakly pseudo-convex manifolds complex,” Bull. Amer, Math. Soc.,79, No. 1, 107–109 (1973).Google Scholar
  149. 149.
    R. Nirenberg and R. O. Wells, Jr., “Approximation theory on differentiable submanifolds of a complex manifold,” Trans. Amer. Math. Soc.,142, 15–35 (1969).Google Scholar
  150. 150.
    F. Norguet, “Problèmes sur les différentielles et les courants,” Ann. Inst. Fourier,1, 1–82 (1962).Google Scholar
  151. 151.
    K. Oka, “Sur les fonctions de plusiers variables. II. Domaines d'holomorphie,” J. Sci. Horoshima Univ.,7, 115–130 (1937).Google Scholar
  152. 152.
    N. Øvrelid, “Integral representation formulas and LP-estimates for the\(\bar \partial \) on weakly pseudo-convex manifolds complex-equation,” Math. Scand.,29, No. 1, 137–160 (1971).Google Scholar
  153. 153.
    N. Øvrelid, “Generators of the maximal ideals of A(D),” Pacif. J. Math.,39, No. 1, 219–223 (1971).Google Scholar
  154. 154.
    E. Ramirez de Arellano, “Ein Divisionproblem und Randintegraldarstellungen in der komplexen Analysis,” Math. Ann.,184, No. 3, 172–187 (1970).Google Scholar
  155. 155.
    R. M. Range, “Holomorphic approximation near strictly pseudoconvex boundary points,” Math. Ann.,201, No. 1, 9–17 (1973).Google Scholar
  156. 156.
    R. M. Range and Yum-Tong Siu, “Uniform estimates for the\(\bar \partial \) on weakly pseudo-convex manifolds complex-equation-equation on domains with piecewise smooth strictly pseudoconvex boundaries,” Math. Ann.,206, No. 4, 325–354 (1973).Google Scholar
  157. 157.
    H.-J. Reiffen, “Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik,” Math. Ann.,161, No. 5, 315–324 (1965).Google Scholar
  158. 158.
    R. Remmert and K. Stein, “Eigentliche holomorph Abbildungen,” Math. Z.,73, No. 2, 159–189 (1960).Google Scholar
  159. 159.
    G. Roos, “Formules intégrales pour les formes différentielles sur Cn. I,” Ann. Scuola Nom. Super. Pisa, Sci. Fis. e Mat.,26, No. 1, 171–179 (1972).Google Scholar
  160. 160.
    H. Rossi, “Holomorphically convex sets in several complex variables,” Ann. Math.,74, No. 3, 470–493 (1961).Google Scholar
  161. 161.
    H. Rossi, “Differentiable submanifolds of complex euclidean space,” in: Internat. Congr. Mathematicians Repts. Abstrs. [in Russian], Moscow (1966), pp. 91–92.Google Scholar
  162. 162.
    H. Rossi, “A generalization of the theorem of Hans Lewy,” Proc. Amer. Math. Soc.,19, No. 2, 436–440 (1968).Google Scholar
  163. 163.
    W. Rudin, Function Theory in Polydiscs, INC, New York-Amsterdam (1969).Google Scholar
  164. 164.
    W. Rudin and E. L. Stout, “Boundary properties of functions of several complex variables,” J. Math. and Mech.,14, No. 6, 991–1005 (1965).Google Scholar
  165. 165.
    D. G. Schaeffer, “An extension of Hartogs' theorem for domains whose boundary is not smooth,” Proc. Amer. Math. Soc.,25, No. 3, 714–715 (1970).Google Scholar
  166. 166.
    W. Schmid, “Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen,” Invent. Math.,9, No. 1, 61–80 (1969).Google Scholar
  167. 167.
    M. Schneider, “Vollständige Durchschnittie in Steinschen Mannigfaltigkeiten,” Math. Ann.,186, No. 3, 191–200 (1970).Google Scholar
  168. 168.
    K. Stein, “Zur Theorie der Funktionen mehrer komplexer Veränderlichen. Die Regularität-shüllen niederdimensionaler Mannigfaltigkeiten,” Math. Ann.,114, 543–569 (1937).Google Scholar
  169. 169.
    H. S. Shapiro, “Boundary values of bounded holomorphic functions of several variables,” Bull. Amer. Math. Soc.,77, No. 1, 111–116 (1971).Google Scholar
  170. 170.
    H. S. Shapiro, “Boundary values of bounded holomorphic functions,” Stud. Math.,44, No. 4, 355–358 (1972).Google Scholar
  171. 171.
    Yum-Tong Siu, “Sheaf cohomology with bounds and bounded holomorphic functions,” Proc. Amer. Math. Soc.,21, No. 1, 226–229 (1969).Google Scholar
  172. 172.
    E. M. Stein, “The analogues of Fatou's theorem and estimates for maximal functions,” in: Geometry of Homogeneous Bounded Domains, Rome (1968), pp. 287–307.Google Scholar
  173. 173.
    E. M. Stein, “Boundary values of holomorphic functions,” Bull. Amer. Math. Soc.,76, No. 6, 1292–1296 (1970).Google Scholar
  174. 174.
    E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton Univ. Press, Princeton, N. J. (1972).Google Scholar
  175. 175.
    E. M. Stein, “Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups,” Actes. Congr. Int. Mathématiciens, 1970, T. 1, Paris (1971), pp. 173–189.Google Scholar
  176. 176.
    E. M. Stein, “Singular integrals and estimates for the Cauchy-Riemann equations,” Bull. Amer. Math. Soc.,79, No. 2, 440–445 (1973).Google Scholar
  177. 177.
    G. Stolzenberg, “Polynomially and rationally convex sets,” Acta Math.,109, No. 3, 259–289 (1963).Google Scholar
  178. 178.
    G. Stolzenberg, “Uniform approximation on smooth curves,” Acta Math.,115, No. 3–4, 185–198 (1966).Google Scholar
  179. 179.
    E. L. Stout, “On some restriction algebras,” in: F. Birtel (ed.), Function Algebras, (Proc. Internat. Symp. Function Algebras, Tulane Univ.), Scott-Foresman and Co., Chicago (1966).Google Scholar
  180. 180.
    E. L. Stout, “The second Cousin problem with bounded data,” Pacif. J. Math.,26, No. 2, 379–387 (1968).Google Scholar
  181. 181.
    E. L. Stout, “On the multiplicative Cousin problem with bounded data,” Ann. Scuola Norm. Super Pisa, Sci. Fis. e Mat.,27, No. 1, 1–17 (1973).Google Scholar
  182. 182.
    U. Venugopalkrishna, “Fredholm operators associated with strongly pseudoconvex domains in Cn,” J. Funct. Anal.,9, No. 3, 349–373 (1972).Google Scholar
  183. 183.
    N. Vormoor, “Topologische Forsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng pseudokonvexen Gebieten im Cn mit C-Rand,” Math. Ann.,204, No. 3, 239–261 (1973).Google Scholar
  184. 184.
    B. M. Weinstock, “Continuous boundary values of analytic functions of several complex variables,” Proc. Amer. Math. Soc.,21, No. 2, 463–466 (1969).Google Scholar
  185. 185.
    B. M. Weinstock, “An approximation theorem for\(\bar \partial \)-closed forms of type (n,n−1),” Proc. Amer. Math. Soc.,26, No. 4, 625–628 (1970).Google Scholar
  186. 186.
    B. M. Weinstock, “Approximation by holomorphic functions on certain product sets in CN,” Pacif. J. Math.,43, No. 3, 811–822 (1972).Google Scholar
  187. 187.
    R. O. Wells, Jr., “Holomorphic approximation on real-analytic submanifolds of a complex manifold,” Proc. Amer. Math. Soc.,17, No. 6, 1272–1275 (1966).Google Scholar
  188. 188.
    R. O. Wells, Jr., “On the local holomorphic hull of a real submanifold in several complex variables,” Commun. Pure and Appl. Math.,19, No. 2, 145–165 (1966).Google Scholar
  189. 189.
    R. O. Wells, Jr., “Holomorphic hulls and holomorphic convexity of differentiable submanifolds,” Trans. Amer. Math. Soc.,132, No. 1, 245–262 (1968).Google Scholar
  190. 190.
    R. O. Wells, Jr., “Holomorphic hulls and holomorphic convexity,” Rice Univ. Stud.,54, No. 4, 75–84 (1968).Google Scholar
  191. 191.
    R. O. Wells, Jr., “Real-analytic subvarieties and holomorphic approximation,” Math. Ann.,179, No. 2, 130–141 (1969).Google Scholar
  192. 192.
    R. O. Wells, Jr., “Concerning the envelope of holomorphy of a compact differentiable sub manifold of a complex manifold,” Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,23, 347–361 (1969).Google Scholar
  193. 193.
    R. O. Wells, Jr., “Function theory on differentiable submanifolds,” in: Contributions to Analysis. A collection of Papers Dedicated to Lipman Bers, Academic Press, Inc., New York (1974).Google Scholar
  194. 194.
    J. Wermer, “The hull of a curve in Cn,” Ann. Math.,68, No. 3, 550–561 (1958).Google Scholar
  195. 195.
    J. Wermer, “Polynomial approximation on an arc in C3,” Ann. Math.,62, No. 2, 269–270 (1955).Google Scholar
  196. 196.
    J. Wermer, “Approximation on a disk,” Math. Ann.,155, No. 4, 331–333 (1964).Google Scholar
  197. 197.
    J. Wermer, “Polynomially convex discs,” Math. Ann.,158, No. 1, 6–10 (1965).Google Scholar

Additional literature cited

  1. 198.
    L. A. Aizenberg, “On\(\bar \partial \)-closed exterior differential forms of type (p,n−1) in space Cn,” Dokl. Akad. Nauk SSSR,209, No. 5, 1009–1012 (1973).Google Scholar
  2. 199.
    L. A. Aizenberg and Sh. A. Dautov, Differential Forms Orthogonal to Holomorphic Functions or Forms and Their Properties [in Russian], Nauka (SO) (1975).Google Scholar
  3. 200.
    A. M. Aronov, “On functions representable by the Martinelli-Bochner integral,” in: Certain Properties of Holomorphic Functions of Several Complex Variables [in Russian], Krasnoyarsk (1973), pp. 35–39.Google Scholar
  4. 201.
    A. M. Aronov and Sh. A. Dautov, “On the result of B. Weinstock,” in: Certain Properties of Holomorphic Functions of Several Complex Variables [in Russian], Krasnoyarsk (1973), pp. 193–195.Google Scholar
  5. 202.
    V. S. Vladimirov, “Holomorphic functions with a positive imaginary part in the future funnel,” Matem. Sb.,93, No. 1, 3–17 (1974).Google Scholar
  6. 203.
    V. S. Vladimirov and Yu. N. Drozhzhinov, “Holomorphic functions in a polydisc with a non-negative imaginary part,” Matem. Zametki,15, No. 1, 55–61 (1974).Google Scholar
  7. 204.
    A. V. Romanov, “Formula and bounds for the solution of the tangential Cauchy-Riemann equations,” Dokl. Akad. Nauk SSSR,220, No. 3 (1975).Google Scholar
  8. 205.
    H. Alexander, “Holomorphic mappings from the ball and polydisc,” Math. Ann.,209, No. 3, 249–256 (1974).Google Scholar
  9. 206.
    W. Alt, “Singulare Integrale mit gemischten Homogenitäten auf Mannigfaltigkeiten und Anwendungen in der Funktionentheorie,” Math. Z.,137, No. 3, 227–256 (1974).Google Scholar
  10. 207.
    J.-E. Björk, “A class of uniform algebras for which the peak point conjecture is true,” Preprint, Univ. of Stockholm (1974).Google Scholar
  11. 208.
    J.-E. Björk, “Analytic structures in the maximal ideal space of a uniform algebra and holomorphic approximation on compact sets in Cn. A survey of some results and problems,” Priprint, Univ. of Stockholm (1974).Google Scholar
  12. 209.
    A. M. Chollet, “Ensembles de zéros à la frontière de fonctions analytiques dans la boule de Cn,” C. R. Acad. Sci. Paris,277, No. 24, A1165-A1167 (1973).Google Scholar
  13. 210.
    C. Fefferman, “The Bergman kernel and biholomorphic mappings of pseudoconvex domains,” Invent. Math.,26, No. 1, 1–65 (1974).Google Scholar
  14. 211.
    G. B. Folland and E. M. Stein, “Parametrices and estimates for the\(\bar \partial \)-complex on strongly pseudoconvex boundaries,” Bull. Amer. Math. Soc.,80, No. 2, 253–258 (1974).Google Scholar
  15. 212.
    F. R. Harvey and H. B. Lawson, Jr., “Boundaries of complex analytic varieties,” Bull. Amer. Math. Soc.,80, No. 1, 180–183 (1974).Google Scholar
  16. 213.
    L. R. Hunt and R. O. Wells, Jr., “Holomorphic extension for nongeneric CR-submanifolds,” Preprint, Texas Tech. Univ. and Rice Univ. (1973).Google Scholar
  17. 214.
    L. R. Hunt and R. O. Wells, Jr., “Extensions of CR-functions,” Preprint, Texas Tech. Univ. and Rice Univ. (1974).Google Scholar
  18. 215.
    S. G. Krantz, “Optimal Lipschitz and LP-estimates for the equation\(\bar \partial \)u =f on strongly pseudo-convex domains,” Dissertation, Princeton Univ., Princeton, N. J. (1974).Google Scholar
  19. 216.
    P. Malliavin, “Fonctions de Green d'un ouvert strictement pseudoconvexe et classe de Nevanlinna,” C. R. Acad. Sci. Paris,278, No. 3, 141–144 (1974).Google Scholar
  20. 217.
    P. Malliavin, “Elliptic estimates and diffusions in Riemannian geometry and complex analysis,” Preprint, Inst. H. Poincaré (1974).Google Scholar
  21. 218.
    R. M. Range and Yum-Tong Siu, “Ck approximation by holomorphic functions and\(\bar \partial \)-closed forms on submanifolds of a complex manifold,” Math. Ann.,210, No. 2, 105–122 (1974).Google Scholar
  22. 219.
    Yum-Tong Siu, “The\(\bar \partial \) problem with uniform bounds on derivatives,” Math. Ann.,207, No. 2, 163–176 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • G. M. Khenkin
  • E. M. Chirka

There are no affiliations available

Personalised recommendations