Climatic Change

, Volume 29, Issue 3, pp 333–352 | Cite as

Long-term changes of the surface air temperature in relation to solar inertial motion

  • Ivanka Charvátová
  • Jaroslav Střeštík
Article

Abstract

The inertial motion of the Sun around the barycentre, or centre of mass, of the Solar System has been employed as the base in searching for possible influence of the Solar System as a whole on climatic processes, especially on the changes in surface air temperature. A basic cycle of about 180–200 years and its higher harmonics up to 30 years have been found in surface air temperature of central Europe since 1753, established from 13 continuous instrumental time series. These periods correspond to the periods of solar inertial motion. In the first half of the 19th century, when the solar motion was chaotic, this temperature was about 0.75°C lower than that in the 20th (1940–50) and the 18th (1760–70) centuries. The mentioned decades of long-term temperature maxima coincide with the central decades of the ordered (trefoil) motion of the Sun. The temperatures in coastal Europe have been found to have slightly different properties, especially on a long-time scale. The periods of 35–45 years are significantly pronounced in the coastal Europe temperature spectrum. The chaotic motion of the Sun in the next decades could decrease both the solar forcing and global surface air temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, A., Meligé, J. L. and van der Mersch, I.: 1990, ‘Evolutive Spectral Analysis of Sunspot Data over the Past 300 Years’,Phil. Trans. R. Soc. Lond. A330, 529–541.Google Scholar
  2. Blackman, R. D. and Tukey, J. W.: 1958,The Measurement of Power Spectra, Dover Public. Inc., New York.Google Scholar
  3. Bradley, R. S., Kelly, P. M., Jones, P. D., Goodess, C. M., and Diaz, H. F.: 1985,A Climatic Data Bank for Northern Hemisphere Land Areas, 1851–1980, U.S. Dept. of Energy, Washington, D.C.Google Scholar
  4. Briffa, K. R., Bartholin, T. S., Eckstein, D., Jones, P. D., Karlén, W., Schweingruber, F. H., and Zetterberg, P.: 1990, ‘A 1400-year Tree-Ring Record of Summer Temperatures in Fennoscandia’,Nature 346, 434–439.Google Scholar
  5. Briffa, K. R. and Schweingruber, F. H.: 1992, ‘Recent Dendroclimatic Evidence of Northern and Central European Summer Temperatures’, in Bradley, R. S. and Jones, P. D. (eds.),Climate since AD. 1500, Routledge, London, pp. 366–391.Google Scholar
  6. Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, P., Schweingruber, F. H., Karlén, W., Zettenberg, P., Eronen, M.: 1992, ‘Fennoscandian Summers from A.D. 500: Temperature Changes on Short and Long Time Scales’,Clim. Dynam. 7, 111–119.Google Scholar
  7. Charvátová, I.: 1988, ‘The Solar Motion and the Variability of Solar Activity’,Advanc Space Res. 8, 147–150.Google Scholar
  8. Charvátová, I.: 1989, ‘On the Relation between Solar Motion and the Long Term Variability of Solar Activity’,Studia Geophys. Geod. 33, 230–241.Google Scholar
  9. Charvátová, I.: 1990a, ‘The Relations between Solar Motion and Solar Variability’,Bull. Astr. Inst. Czech. 41, 56–59.Google Scholar
  10. Charvátová, I.: 1990b, ‘On the Relation between Solar Motion and Solar Activity in the Years 1730–80 and 1910–60’,Bull. Astr. Inst. Czech. 41, 200–204.Google Scholar
  11. Charvátová, I.: 1994, ‘Solar Motion and Solar Variability’, inEncyclopedia of Planetary Sciences (main article), Chapman and Hall, New York.Google Scholar
  12. Charvátová, I. and Střeštík, J.: 1991a, ‘Solar Variability as a Manifestation of the Sun's Motion’,J. Atmos. Terr. Phys. 53, 1019–1025.Google Scholar
  13. Charvátová, I. and Střeštík, J.: 1991b, ‘Long Term Variations in Duration of Solar Cycle’,Bull. Astr. Inst. Czech. 42, 90–97.Google Scholar
  14. Charvátová, I. and Střeštík, J.: 1992, ‘A Possible Long-Term Solar Impact on Air Temperature in Relation to Solar Motion’,Studia Geophys. Geod. 36, 338–347.Google Scholar
  15. Charvátová, I. and Střeštík, J.: 1993, ‘Long-Term Climatic Changes in Connection with Solar Motion’, in Ružičková, E., Zeman, A., and Mirecki, J. (eds.),Proc. of workshop “Application of Direct and Indirect Data for the Reconstruction of Climate during the Last Two Millennia”, Brno, June 1992, pp. 47–55.Google Scholar
  16. Charvátová, I and Střeštík, J.: 1994, ‘Changes of ST-phenomena and Surface Air Temperature during the Last Three Centuries in Relation to Solar Inertial Motion’, in Wojcik, G. (ed.),Proc. of Climatological Conference in honor of Prof. Gordzinski, Torun, Poland, September 1993, pp. 30–32.Google Scholar
  17. Courtillot, J., Mouel, L., Ducruix, J., and Cazenave, J.: 1982, ‘Geomagnetic Secular Variation as a Precursor of Climatic Change’,Nature 297, 386–387.Google Scholar
  18. Cress, A. and Schönwiese, C.-D.: 1990, ‘Vulkanische Einflüsse auf die bodennahe und stratosphärische Lufttemperatur der Erde’,Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt/Main, Nr.82.Google Scholar
  19. D'Arrigo, R. and Jacoby, G. C.: 1993, ‘Secular Trends in High Northern Latitude Temperature Reconstructions Based on Tree-Ring’,Clim. Change 25, 163–177.Google Scholar
  20. Fairbridge, R. V. and Shirley, J. H.: 1987, ‘Prolonged Minima and the 179-yr Cycle of the Solar Inertial Motion’,Solar Physics 110, 191–220.Google Scholar
  21. Folland, C. K., Parker, D. E., and Kates, F. E.: 1984, ‘World Marine Temperature Fluctuations 1856–1981’,Nature 310, 670–673.Google Scholar
  22. Folland, C. K., Karl, T. R., and Vinnikov, K. Z.: 1990, ‘Observed Climate Variations and Change’, inClimate Change, Cambridge University Press, p. 198.Google Scholar
  23. Foukal, P. and Lean, J.: 1990, ‘An Empirical Model of Total Solar Irradiance Variation between 1874 and 1988’,Science 247, 556–558.Google Scholar
  24. Friis-Christensen, E. and Lassen, K.: 1991, ‘Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate’,Science 254, 698–700.Google Scholar
  25. Hlaváč, V.: 1966, ‘How Climatic Fluctuations are Manifested in the Prague Temperature Series during the Last 200 Years’,Bull. Météorol. XIX, 33–43, (in Czech).Google Scholar
  26. Hood, L. L. and Jirikovicz, J. L.: 1990, ‘Recurring Variations of Probable Solar Origin in the Atmospheric14C Time Record’,Geophys. Res. Lett. 17, 85–88.Google Scholar
  27. Jacoby, G. C. and D'Arrigo, R.: 1989, ‘Reconstructed Northern Hemisphere Annual Temperature since 1671 Based on High-Latitude Tree-Ring Data from North America’,Clim. Change 14, 39–59.Google Scholar
  28. Jakubcová, I. and Pick, M.: 1986, ‘The Planetary System and Solar-Terrestrial Phenomena’,Studia Geophys. Geod. 30, 224–235.Google Scholar
  29. Jakubcová, I. and Pick, M.: 1987, ‘Correlation between Solar Motion, Earthquakes and Other Geophysical Phenomena’,Annal. Geophys. 5B, 135–141.Google Scholar
  30. Jinjun, J., Petit-Maire, N., and Zhongwei, Y.: 1993, ‘The Last 1000 Years: Climatic Change in Arid Asia and Africa’,Glob. Planet. Change 7, 203–210.Google Scholar
  31. Johnsen, S. J., Dansgaard, W., Clausen, H. B.: 1970, ‘Climatic Oscillations 1200–2000 A.D.’,Nature 227, 482–483.Google Scholar
  32. Jose, P. D.: 1965, ‘Sun's Motion and Sunspots’,Astr. J. 70, 193–200.Google Scholar
  33. Kelly, P. M. and Wigley, T. M. L.: 1990, ‘The Relative Contribution of Greenhouse and Solar Forcing to Observed Trends in Global Mean Temperature’,Nature 347, 460.Google Scholar
  34. Kelly, P. M. and Wigley, T. M. L.: 1992, ‘Solar Cycle Length, Greenhouse Forcing and Global Climate’,Nature 360, 328–330.Google Scholar
  35. Křivský, L. and Pejml, K.: 1988, ‘Solar Activity, Aurorae and Climate in Central Europe in the Last 1000 Years’,Travaux Géophys. XXXIII (1985)606, 77–152.Google Scholar
  36. Lara, A. and Villalba, R.: 1993, ‘A 3620-Year Temperature Record from Fitzroya cupressoides Tree Rings in Southern South America’,Science 260, 1104–1106.Google Scholar
  37. Manley, G.: 1974, ‘Central England Temperatures: Monthly Means 1659 to 1972’,Quart. J. Roy. Met. Soc. 100, 389.Google Scholar
  38. Mayaud, P. N.: 1977, ‘On the Reliability of the Wolf Number Series for Estimating Long-Term Periodicities’,J. Geophys. Res. 82, 1271–1272.Google Scholar
  39. Ochadlik, A. R., Jr., Kritikos, H. N., and Giegengack, R.: 1993, ‘Variations in the Period of the Sunspot Cycle’,Geophys. Res. Lett. 20, 1471–1474.Google Scholar
  40. Parker, D. E., Legg, T. P., and Folland, C. K.: 1992, ‘A New Daily Central England Temperature Series, 1772–1991’,Int. J. Climat. 12, 317–342.Google Scholar
  41. Rabin, D., Wilson, R. M., and Moore, R. L.: 1986, ‘Bimodality of the Solar Cycle’,Geophys. Res. Lett. 13, 352.Google Scholar
  42. Schönwiese, C.-D.: 1987, ‘Moving Spectral Variance and Coherence Analysis and Some Applications on Long Air Temperature Series’,J. Clim. Appl. Meteor. 26, 1723–1731.Google Scholar
  43. Schove, D. J.: 1983,Sunspot Cycles, Hutchinson-Ross, London.Google Scholar
  44. Sonett, C. P.: 1991, ‘Long Period Solar-Terrestrial Variability’,Rev. Geophys., Supplement, U.S. National Report to IUGG, 909–914.Google Scholar
  45. Střeštík, J.: (in press), ‘Calculation of a set of Correlation Coefficients with Sine Functions as a Method for Determining Signal Periodicities’,Studia Geophys. Geod. Google Scholar
  46. Vinnikov, K. Z., Groisman, P. Z., Lugina, K. M., and Golubev, A. A.: 1987, ‘Variations in Northern Hemisphere Mean Surface Air Temperature over 1841–1985’,Meteorol. Hydrol. 1, 45 (in Russian).Google Scholar
  47. Wang, W. C., Portman, D., Gong, G., Zhang, P., and Karl, T.: 1992, ‘Beijing Summer Temperatures since 1724’, in Bradley, R. S. and Jones, P. D. (eds.),Climate since AD. 1500, Routledge, London, pp. 210–223.Google Scholar
  48. Wolf, R.: 1868, ‘Annual Sunspot Data since 1700’,Astronomische Mitt. 24, 111.Google Scholar
  49. World Weather Records, Smithsonian Institution (ed. H. H. Clayton), Washington, 1921–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Ivanka Charvátová
    • 1
  • Jaroslav Střeštík
    • 1
  1. 1.Geophysical Institute AS CR, Boční IISpořilovCzech Republic

Personalised recommendations