Journal of Soviet Mathematics

, Volume 37, Issue 4, pp 1210–1238 | Cite as

Local invariants of four-dimensional pseudo-Riemannian manifolds with Lorentz metric

  • V. V. Nikulin


We pose the problem of rough projective and rigid isotopic classification of the local invariants (of Tyurin) of four-dimensional manifolds with Lorentz metric (and the “intuitive” invariants connected with them); we give their isotopic classification, and reduce the general problem to an arithmetic one. We show the nontriviality of the classification cited for general relativity theory.


Manifold General Relativity General Problem Local Invariant Isotopic Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. R. Shafarevich (ed.), “Algebraic surfaces,” Tr. Mat. Inst. Akad. Nauk SSSR,75 (1965).Google Scholar
  2. 2.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Contemporary Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  3. 3.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 1, Nauka, Moscow (1981).Google Scholar
  4. 4.
    Vik. S. Kulikov, “Degeneration of K3 surfaces,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 5, 1008–1042 (1977).Google Scholar
  5. 5.
    V. V. Nikulin, “Kummer spaces,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 2, 278–293 (1975).Google Scholar
  6. 6.
    V. V. Nikulin, “Integral symmetric bilinear forms and some geometric applications of them,” Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 1, 111–177 (1979).Google Scholar
  7. 7.
    V. V. Nikulin, “Quotient-groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications,” J. Sov. Math.,22, No. 4 (1983).Google Scholar
  8. 8.
    V. V. Nikulin, “Involutions of integral quadratic forms and their application to real algebraic geometry,” Izv. Akad. Nauk SSSR, Ser. Mat.,47, No. 1, 109–188 (1983).Google Scholar
  9. 9.
    R. Penrose, Structure of Space-Time [Russian translation], Mir, Moscow (1972).Google Scholar
  10. 10.
    A. Z. Petrov, Einstein Spaces [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  11. 11.
    I. I. Pyatetskii-Shapiro and I. R. Shafarevich, “Torelli's theorem for algebraic surfaces of type K3,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 3, 530–572 (1971).Google Scholar
  12. 12.
    P. K. Rashevskii, Riemannian Geometry and Tensor Analysis [in Russian], 3rd edn., Nauka, Moscow (1967).Google Scholar
  13. 13.
    A. N. Tyurin, “A local invariant of a Riemannian manifold,” Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 4, 824–851 (1981).Google Scholar
  14. 14.
    A. N. Tyurin, “Local and global invariants of a four-dimensional pseudo-Riemannian manifold,” Tr. Mat. Inst. Akad. Nauk SSSR,165, 205–219 (1984).Google Scholar
  15. 15.
    V. M. Kharlamov, “Supplementary congruences for the Euler characteristic of evendimensional algebraic varieties,” Funkts. Anal. Prilozhen.,9, No. 2, 51–60 (1975)Google Scholar
  16. 16.
    V. M. Kharlamov, “Topological types of nonsingular surfaces of degree 4 in RP3,” Funkts. Anal. Prilozhen.,10, No. 4, 55–68 (1976).Google Scholar
  17. 17.
    V. M. Kharlamov, “Isotopy types of nonsingular surfaces of degree 4 in RP3,” Funkts. Anal. Prilozhen.,12, No. 1, 86–87 (1978).Google Scholar
  18. 18.
    V. M. Kharlamov, “Classification of nonsingular surfaces of degree 4 in RP3 with respect to rigid isotopies,” Funkts. Anal. Prilozhen.,18, No. 1, 49–56 (1984).Google Scholar
  19. 19.
    W. Hodge and D. Pedoe, Methods of Algebraic Geometry [Russian translation], Vol. 1, IL (1954).Google Scholar
  20. 20.
    I. R. Shafarevich, Foundations of Algebraic Geometry [in Russian], Fizmatgiz, Moscow (1972).Google Scholar
  21. 21.
    W. Earth, C. Peters, and A. van de Ven, Compact Complex Surfaces, Springer, Berlin (1984).Google Scholar
  22. 22.
    D. Burns and M. Rappoport, “On the Torelli problem for Kählerian K3 surfaces,” Ann. Scient. Ecole Norm. Super., Ser. 4,8, No. 2, 235–274 (1975).Google Scholar
  23. 23.
    B. Saint-Donat, “Projective models of K3 surfaces,” Am. J. Math.,96, No. 4, 602–639 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • V. V. Nikulin

There are no affiliations available

Personalised recommendations