Journal of Soviet Mathematics

, Volume 16, Issue 6, pp 1487–1509 | Cite as

Tauberian theorems in quantum field theory

  • V. S. Vladimirov
  • B. I. Zav'yalov


A survey is given of the application of Tauberian theory to problems of quantum field theory. In particular, the question of the self-similar asymptotics of the form factors of electron-nucleon scattering and its connection with the singular structure of the commutators of electromagnetic currents in a neighborhood of the light cone is considered in detail.


Field Theory Quantum Field Theory Form Factor Light Cone Tauberian Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. N. Bogolyubov, V. S. Vladimirov, and A. N. Tavkhelidze, “On self-similar asymptotics in quantum field theory. I,” Teor. Mat. Fiz.,12, No. 1, 13–17 (1972); II, No. 3, 205–330 (1972).Google Scholar
  2. 2.
    N. N. Bogolyubov, A. A. Logunov, and I. T. Todorov, Foundations of the Axiomatic Approach in Quantum Field Theory [in Russian], Nauka, Moscow (1969).Google Scholar
  3. 3.
    N. N. Bogolyubov, B. V. Medvedev, and M. K. Polivanov, Questions in the Theory of Dispersion Relations [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  4. 4.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to Quantum Field Theory [in Russian], Nauka, Moscow (1976).Google Scholar
  5. 5.
    Yu. A. Brychkov and Yu. M. Shirokov, “On the asymptotic behavior of the Fourier transform,” Teor. Mat. Fiz.,4, No. 3, 301–309 (1970).Google Scholar
  6. 6.
    K. A. Bukin, “Asymptotic behavior of the Wightman two-point function,” Tr. Mosk. Fiz.-Tekh. Inst., Ser. Radiotekh. Elektron., 92–97 (1977).Google Scholar
  7. 7.
    N. Wiener, Fourier Integral and Certain of Its Applications, Dover (1933).Google Scholar
  8. 8.
    E. Vitsorek, V. A. Matveev, D. Robashik, and A. N. Tavkhelidze, “Self-similarity and asymptotics on the mass surface on the basis of the Dyson-Jost-Lehmann representation,” Teor. Mat. Fiz.,16, 3, 315–327 (1973).Google Scholar
  9. 9.
    V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables [in Russian], Nauka, Moscow (1964).Google Scholar
  10. 10.
    V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker (1971).Google Scholar
  11. 11.
    V. S. Vladimirov, “A multidimensional generalization of the Tauberian theorem of Hardy and Little-wood,” Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 5, 1084–1101 (1976).Google Scholar
  12. 12.
    V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker (1971).Google Scholar
  13. 13.
    V. S. Vladimirov and B. I. Zav'yalov, “On Tauberian theorems in quantum field theory,” Teor. Mat. Fiz.,40, No. 2, 155–177 (1979).Google Scholar
  14. 14.
    I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press (1966).Google Scholar
  15. 15.
    A. K. Gushchin, V. P. Mikhailov, and L. A. Muravei, “On the stabilization of solutions of nonstationary boundary value problems for linear partial differential equations,” Dynamics of Continuous Media [in Russian], No. 23, Novosibirsk (1975), pp. 57–91.Google Scholar
  16. 16.
    V. A. Ditkin and A. P. Prudnikov, Operational Calculus [in Russian], Vysshaya Shkola, Moscow (1975).Google Scholar
  17. 17.
    Yu. N. Drozhzhinov and B. I. Zav'yalov, “Quasiasymptotics of generalized functions and Tauberian theorems in the complex domain,” Mat. Sb.,102, 372–390 (1977).Google Scholar
  18. 18.
    Yu. N. Drozhzhinov and B. I. Zav'yalov, “Tauberian theorems for generalized functions with supports in cones,” Mat. Sb.,108, No. 1, 78–90 (1979).Google Scholar
  19. 19.
    B. I. Zav'yalov, “Self-similar asymptotics of electromagnetic form factors and the behavior of their Fourier transforms in a neighborhood of the light cone,” Teor. Mat. Fiz.,17, No. 2, 178–188 (1973).Google Scholar
  20. 20.
    B. I. Zav'yalov, “Quasiasymptotics of generalized functions and the self-similarity of electromagnetic form factors,” Teor. Mat. Fiz.,19, No. 2, 163–171 (1974).Google Scholar
  21. 21.
    B. I. Zav'yalov, “Björken asymptotics of form factors in deep inelastic scattering and general principles of field theory,” Teor. Mat. Fiz.,33, 310–317 (1977).Google Scholar
  22. 22.
    B. I. Zav'yalov and S. I. Maksimov, “Self-similarity in the physical domain and the Jost-Lehmann-Dyson representation,” Preprint ITF-75-77P, Kiev (1975).Google Scholar
  23. 23.
    I. A. Obragimov and Yu. V. Linnik, Independent and Stationary Related Quantities [in Russian], Nauka, Moscow (1965).Google Scholar
  24. 24.
    A. A. Logunov, M. A. Mestvirishvili, and Nguen Van Kh'eu, Preprint IFVE 69-49K, Serpukhov (1967).Google Scholar
  25. 25.
    A. A. Logunov, M. A. Mestvirishvili, and V. A. Petrov, “The behavior of sections of explosive and inclusive processes at high energies,” Teor. Mat. Fiz.,32, No. 1, 3–33 (1977).Google Scholar
  26. 26.
    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, “Self-similarity, current commutators, and vector dominance in deep inelastic lepton-hadron interactions,” in: Problemy Fiziki Elementarnykh Chastits i Atomnogo Yadra, Vol. 2, No. 1 (1970), pp. 5–32.Google Scholar
  27. 27.
    A. G. Postnikov, “Tauberian theory and its applications,” Tr. Mat. Inst. im. V. A. Steklova,144 (1978).Google Scholar
  28. 28.
    V. A. Smirnov, “Asymptotic expansions of generalized functions which are singular on the light cone,” Teor. Mat. Fiz.,29, No. 3, 336–346 (1976).Google Scholar
  29. 29.
    V. A. Smirnov, “On the relation between the behavior of electromagnetic form factors in the Björken limit and the singularities of their Fourier transforms on the light cone,” Teor. Mat. Fiz.,33, No. 3, 319–326 (1977).Google Scholar
  30. 30.
    G. H. Hardy, Divergent Series, Oxford Univ. Press (1949).Google Scholar
  31. 31.
    S. A. Anikin and O. I. Zavialov, “Short-distance and light-cone expansion for products of currents,” Ann. Phys.,116, 527–560 (1978).Google Scholar
  32. 32.
    I. D. Björken, Lectures in Varenna School, Course 41, Varenna, Italy (1967).Google Scholar
  33. 33.
    N. N. Bogolyubov, Proc. of the XVth Int. Conf. “High Energy Physics” (Kiev, Aug. 26–Sept. 4, 1970), Naukova Dumka, Kiev (1972), p. 537.Google Scholar
  34. 34.
    N. N. Bogolyubov, V. A. Matveev, G. Petrov, and D. Robaschik, “Causality properties of form factors,” Repts. Math. Phys.,10, 195–202 (1976).Google Scholar
  35. 35.
    R. A. Brandt, “Electroproduction structure functions, integral representation, and light cone commutators,” Phys. Rev.,D1, 2808–2823 (1976).Google Scholar
  36. 36.
    E. Brüning and P. Stichel, “On the equivalence of scaling, light-cone singularities, and the asymptotic behavior of the Jost-Lehmann spectral function,” Commun. Math. Phys.,36, No. 2, 137–156 (1974).Google Scholar
  37. 37.
    N. Christ, B. Hasslacher, and A. N. Mueller, “Light-cone behavior of perturbation theory,” Phys. Rev.,D6, No. 12, 3543–3562 (1972).Google Scholar
  38. 38.
    F. J. Dyson, “Integral representation of causal commutators,” Phys. Rev.,110, 1460–1464 (1958).Google Scholar
  39. 39.
    B. Geyer, D. Robaschik, and E. Wieczorek, “Theory of deep inelastic lepton-hadron scattering,” Fortsch. Phys.,27, No. 2/3, 75–168 (1979).Google Scholar
  40. 40.
    T. H. Goneleus, “Tauberian remainder theorems,” Lect. Notes Math.,232, 1–75 (1971).Google Scholar
  41. 41.
    R. Jost and H. Lehmann, “Integral Darstellung kausaler Kommutatoren,” Nuovo Cimento,5, 1598–1610 (1957).Google Scholar
  42. 42.
    W. H. Kozyrski and S. J. Maximov, “On lskinematical’ scaling breakdown,” Preprint ITP-78-8E, Kiev (1978).Google Scholar
  43. 43.
    W. H. Kozyrski and S. J. Maximov, “Scaling in improved variables,” Preprint ITP-78-57E, Kiev (1978).Google Scholar
  44. 44.
    J. Kuhn, “On the connection between singularity structure of causal distributions and the behavior in the Björken limit,” Nuovo Cimento,23A, 420–430 (1974).Google Scholar
  45. 45.
    H. Leutwyler and P. Otterson, “Theoretical problems in deep inelastic scattering,” in: R. Gatto (ed.), Scale and Conformal Symmetry in Hadron Physics, Wiley, New York (1973), pp. 1–30.Google Scholar
  46. 46.
    H. Leutwyler and J. Stern, “Singularities of current commutators on the light cone,” Nucl. Phys.,B20, 77–101 (1970).Google Scholar
  47. 47.
    M. Maag, “Rigorous results concerning light cone dominance in deep inelastic lepton-hadron scattering,” Commun. Math. Phys.,38, No. 3, 225–240 (1974).Google Scholar
  48. 48.
    W. Marciano and H. Pagels, “Quantum chromodynamics,” Phys. Rep.,36C, No. 3, 137–276 (1978).Google Scholar
  49. 49.
    O. Nachtmann, “Deep inelastic lepton scattering,” in: Proc. of 1977 Hamburg Symp. on Lepton and Photon Interaction at High Energies, Hamburg, DESY (1977), pp. 811–836.Google Scholar
  50. 50.
    H. D. Politzer, “Asymptotic freedom: an approach to strong interaction,” Phys. Rep.,14C, No. 4, 129–180 (1974).Google Scholar
  51. 51.
    L. Schwartz, Seminaire 1954/55, Expose No. 7.Google Scholar
  52. 52.
    E. Seneta, “Regularly varying functions,” Lect. Notes Math.,508, 1–110 (1976).Google Scholar
  53. 53.
    R. F. Streater and A. S. Wightman, PCT, Spin, and Statistics and All That, Benjamin, New York-Amsterdam (1964).Google Scholar
  54. 54.
    Yu. M. Zinoviev, “On Lorentz invariant distributions,” Commun. Math. Phys.,47, No. 1, 33–42 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. S. Vladimirov
  • B. I. Zav'yalov

There are no affiliations available

Personalised recommendations