Ukrainian Mathematical Journal

, Volume 32, Issue 5, pp 385–391 | Cite as

Conditions for the oscillation of solutions of a class of elliptic equations of high orders with constant coefficients

  • V. I. Gorbaichuk
  • I. G. Dobrotvor
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. Baranski, “The mean value theorem and oscillatory properties of certain elliptic equations in three-dimensional space,” Pr. Mat.,19, No. 1, 13–14 (1976).Google Scholar
  2. 2.
    F. Barański, “O wlasnościach oscylacyjnych i liniach wezluw rozwiazań pewnych ròwnań ròzniczkowych szastkowych typu eliptycznego,” Pr. Mat.,7, 71–96 (1962).Google Scholar
  3. 3.
    O. I. Bobik, P. I. Bodnarchuk, B. I. Ptashnik, and V. Ya. Skorobogat'ko, Elements of the Theory of Partial Differential Equations [in Ukrainian], Naukova Dumka, Kiev (1972).Google Scholar
  4. 4.
    K. Kreith, “Oscillation theory,” Lect. Notes Math., Springer-Verlag, Berlin-Heidelberg-New York (1973).Google Scholar
  5. 5.
    E. S. Noussair and N. Yoshida, “Nonoscillation criteria for elliptic equations of order 2m,” Rend. Sci. Fis. Mat. Nat. Lincei,59, Nos. 1–2, 57–64 (1976).Google Scholar
  6. 6.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley (1962).Google Scholar
  7. 7.
    Z. Frydrych, “On certain oscillatory properties for solutions of an equation with a biharmonic leading part,” Ann. Polon. Mat.,30, No. 3, 225–228 (1975).Google Scholar
  8. 8.
    V.I. Gorbaichuk and I. G. Dobrotvor, “Mean value theorems for the solutions of a class of equations with polyharmonic operator, and questions of oscillation,” in: Second Republic Symposium on Differential and Integral Equations. Abstracts of Papers [in Russian], Odessa State Univ. (1978), pp. 45–46.Google Scholar
  9. 9.
    I. N. Vekua, New Methods of Solving Elliptic Equations [in Russian], Gostekhizdat, Moscow-Leningrad (1948).Google Scholar
  10. 10.
    E. Wachnicki, “On the oscillatory properties of solutions of certain elliptic equations,” Pr. Mat.,19, No. 1, 165–169 (1976).Google Scholar
  11. 11.
    K. Maurin, Analiza. Cz. 2. Wstep do analizy globalnej, PWN, Warsaw (1971).Google Scholar
  12. 12.
    H. Cartan, Elementary Theory of Analytic Functions of One and Several Complex Variables, Addison-Wesley, Reading, Massachusetts (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. I. Gorbaichuk
    • 1
  • I. G. Dobrotvor
    • 1
  1. 1.Ternopol'skii Pedagogic InstituteUSSR

Personalised recommendations