Ukrainian Mathematical Journal

, Volume 32, Issue 5, pp 375–379 | Cite as

Generalized analytic continuation by symmetry

  • A. A. Bespal'tsev
Article
  • 24 Downloads

Keywords

Analytic Continuation Generalize Analytic Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. V. Kuzhel', “Characteristic matrix functions of quasiunitary operators of any rank in a space with indefinite metric,” Dopovidi Akad. Nauk Ukr. SSR, No. 9, 1135–1138 (1962).Google Scholar
  2. 2.
    A. V. Kuzhel', “Spectral analysis of bounded non-self-adjoint operators in a space with indefinite metric,” Dokl. Akad. Nauk SSSR,151, No. 4, 772–774 (1963).Google Scholar
  3. 3.
    R. Nevanlinna, “On bounded analytic functions,” Soumalais. Tiedeakat. Toimituks., Ser. Al, No. 23, 1–75 (1929).Google Scholar
  4. 4.
    W. Seidel, “On the distribution of values of bounded analytic functions,” Trans. Am. Math. Soc.,36, 201–226 (1934).Google Scholar
  5. 5.
    A. Lohwater, “Boundary behavior of analytic functions,” in: Matematicheskii Analiz, Itogi Nauki,10, 1–158, VINITI, Moscow (1973).Google Scholar
  6. 6.
    E. Collingwood and A. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, Cambridge (1966).Google Scholar
  7. 7.
    W. Seidel, “On the cluster values of analytic functions,” Trans. Am. Math. Soc.,34, 1–21 (1932).Google Scholar
  8. 8.
    B. Sz. Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, Elsevier (1971).Google Scholar
  9. 9.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow-Leningrad (1950).Google Scholar
  10. 10.
    V. P. Potapov, “Multiplicative structure of J-contractive matrix functions,” Tr. Mosk. Mat. Ob-va, No. 4, 195–236 (1955).Google Scholar
  11. 11.
    V. P. Potapov, “On holomorphic matrix functions bounded in the unit circle,” Dokl. Akad. Nauk SSSR,72, No. 5, 849–852 (1950).Google Scholar
  12. 12.
    D. Z. Arov, “On Darlington's method in the study of dissipative systems,” Doki. Akad. Nauk SSSR,201, No. 3, 559–562 (1973).Google Scholar
  13. 13.
    D. Z. Arov, “Darlington realization of matrix functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 6, 1299–1331 (1973).Google Scholar
  14. 14.
    W. Hayman, Meromorphic Functions, Clarendon Press, Oxford (1964).Google Scholar
  15. 15.
    Yu. A. Rozanov, Stationary Stochastic Processes [in Russian], Fizmatgiz, Moscow (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. A. Bespal'tsev
    • 1
  1. 1.Simferopol State UniversityUSSR

Personalised recommendations